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INIERDEPENDENCE OF WEAKENED FORMS OF THE AXIOM OF CHOICE
Tomé$ JECH, Praha

ntroduction )

The aim of the present paper 1 is to discuss the inter-
dependence of weakened forms of the general axiom of choige
in GGdel-Bernays axiomatic set theory Z (cf.[2]):

There is a choice-function on the universal
(E) class, i.e. there is a function F such that
F(x)e x for every non-void set X .
It is well known that the following axiom of choice (in clas-
sical form) and the well ordering principle are equivalent
(@ number of set-theoretical statements equivalent to these
is stated 1n [10)):
On every family of non-void sets there is a

(ac) choice function . i

(WE) Every set can be well ordered .
Let us consider their weakened forms (these are, if o« is a
mmwa), statements of the set theory):

(ACH‘) {On every family of cardinality ¢, of non-

void sets there is & choice function .
Every cardinal number 1s comparable with th,c
“ l(i.es equml, ‘leas or.grester than & )

1) read- 1n Vopénka & Seminar ¢n set theory at the Carolina
..University in Pprague in March 1966 .

2) i.e. @ special class (of.[2]) which is an ordinal number.
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Furthermore, let us consider the ordering principle, which
is a consequence of the axiom of choice:

(opP) Every set can be ordered .

And finally, let us consider the principle of dependent
ghoices (considered by A. Tarski in [12])) and its generali-

zation (A. Lévy [6]):

If R is a relation on the set @ such that
(Vxea)(Iy ea)<xy>eR], then there is

a sequence X4y Xy,.c0 9 Xm ..+ of elements

of @ such that (X, Xn,.)€R for m=1,2,....
Let a be a set and R a relation such that
for every 7 € @Wx and every g & a? (func-
(PoC) tion of y into @ ) there is a function

A with ($9-, fOr)>€ R for every

(ppC)

fea

TeE R -
It is known that (AC) = (WE) m (Vy )(WER, )=(Vy)(PDCH.) -
Moreover, it is apparent that, for €0, (ACHc)—>
—(ACH,), (WEH,.)—>(WE Hy)  and (PDCH,) —» (PDC &y ) -

_ _All these weakened forms of the axiom of cho:l;ye are in-
dependent on the axioms of the set theory = . The indepen-
dence of (WEH,) (and therefore also of the axiom of choice)
was_shown by Hejek and Vop&nka [3], the independence of the
other forms by Jech and Sochor [4],[5]. The following form
6:! the axiom of choice is weaker than all the statements
statedaabove (e.g. (OP)—» (¢) is shown below):

_ Every denumerable family of pairs contains
(e) 8 denumerable auhfam:lly, on vh:loh‘ there is
a ehoicé-:\mction . '
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The statement (e) is also independent on axioms of the
set theory S . This follows from mentioned papers of
Jech and Sochor.

'\‘hg interdependence of weakgned forms of the axiom
of choice has been thoroughly investigated in axiom sys~-
tems where the gxiom of regularity - Fundjerunsgaxiom -
is not considered, viz. where the existence of individualg
(or yrelements or nop-founded setg) is permited. Fraenkel
showed in [1] the independence of the axiom of choice on
the existence of chnice-function on every denumerable fa-
nily of finite sets. Mostowski [7],[8] showed the inde-
pendence of the axiom of choice on the ordering principle
and’on the principle of dependent choices, and the inde-
pendence of (Vr<ac)(ACH7)—-> (AC Hy ) for pe=
gulgr special Hy 3). The most thorough investigation
was carried out by Lévy in [61

In present paper, similar results are obtained for
the set theory = . The following assertion is proved
(in section 4), AL t, 48 anv regular gpecial cardinal
nugber:

Nope of following gtatememts: ordering pringiple(OP),
restricted well-ordering principle WE ), pestrigted
axiom of choice (ACH) and generalized principle of depen-
dent chojces (PPCH) gan be proved from the sxioms of the

3) A special aleph i, is called regular if it is regu-
lar under validity of the axiom of choice. E.g.- t4, is re-
gular, although it can be & union of denumerable collec-
tion of denumerable sets if the axiom of choice’ does not
hold.

¢«
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set theory ¥ and the sssumption that (AC Hy),(NE &)
and (PDC #,) hold for every 7 € o« .

In [6] it 1e proved that (PDC H,) implies both (Acux)
and (WEH), and that, for singular 8, (Vy-€o)(ACH, )
implies (AC H.), and (Vyea) (PDC #9) implies (PDCH,.).
The ordering princgiple implies that on every family of
finite sets there is a choice function (indeed, if a is
s family of finite sets and Ua 1is ordered, then every
X &€ & has the least element which can be chaosen).

The following questions remain open:
1. Does (Vyex)WE Hy) imply (WE H,) for sin-
. gular H ?

2. What relation is there between (AC H,) and(WEH ) ?

3. Is the axiom of Vchoiee indepenc}ent of the ordering

principle?

4. Is the axiom of choice independent of(¥y)(AC Hyp) ?

5. Is the general axiom of choice independent of the

"weak" axiom of choice (AC)? i
If the validity of the axiom of regularity is not required,
the answer to questions 3,4 and 5 is affirmative. The pro-
blem is whether the same holds for theory z .

The results of ;;reaent paper are obtainecd by cons!:ruc—
tionvof a 0 <model ‘o set theary. The reader is assumed
to be familiar with the papers [2],[14],[16]and[4]; the
notation used in these pgpers is preserved here.

2o The medel V. and the chargcteristde 6(ct) o the
Yopological space



' The model V (with parameters «md,<c,t5, G, xZ, £)
introduced by Vop¥nka in [13) and [14] is the syntactic mo~
del of the theory 3 * (GGdel’s axioms A,B,C,D,E) in the
theory Zimg (A,B,C,B with individuals).®) In [15], the
dependence of properties of the v -model upon the cha-
racteristics w(ct) and,»(ct) of the topological
space (et is investigated. For the purpose of present
Dlp-ez{ it is useful to consider a further characteristic
of the space Cct > _

Definition. 6 (ct) 1is the least cardinal number #,
such that there is no basis t, of the topology t .with
the following property: The intersection f‘g"mr of any

monotone (i.e. %27y for § € 7 ) collection of ele-

ments of f, contains an open non-void subset. ° )

Lemma 1. Let x € Pot, &= P, 4,< 6 (ct) , let
4 %0 be an open set and let u & F x s L& cardx=4, .
Then there exist x € & and open v* % O such that
card x = Hy , vreunFrx=s27.

Proaf. Let t, be a basis of the topology ¢ such that

79%1@ contains an open non-void subset for every monotone

4)-In the present paper,-the operations, notions etc. in
the V -model are provided with an asterisk.

5) For every space, ¢ (ct)& »(cf)(»(ct) is the least car-
dinal mumber ¢, such that there is no-open-non-void set -
which can be covered by 4, closed nowhere dense sets). The
present €(ct) is a minor modification of the characteris-
tics considered in [13] (unpublished) and in [9].

¢
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collection {3 §,, o), OFf elemnts of % . There is a
polynonial g and &L €% such thatistnF'g.%Q‘&ﬂf(g_)rx",

There exists a monotone collection {v; ;1’“’1’ Y€ to
and a 1-1 sequence {4, f,¢ w, Of elements of & such
that g e UnFly, rdeg’ . Lot z={y,; yeay},
let 0 # 1/5’,{2»‘1"3. . Let us pgove 7 & Flx= 27, If
there were w € t, and 4 € R such that w € vn Fly exd

&y g2’ , then there would exist y€ @), and wWef

with W s wnF'<yydegd y+y contradic-
ting W e F<y,r>eg& Fne(g) .

Lempa 2. Let &= R . Let £ &Ry, cad*'f’<*k,‘,1 s

B, € 6'(ct). Then there exists ge B¢ such thatg-*f
and (VxeD(gN[g(x)s L& ecard g(x)<u,]-

Proof. We can assume that D(f)={Xx; x€ Ff(x)s
s & card £(x)< H;} . Evidently, & (f) is the union of
pairwise disjoint openlseta 'F"’('y.) (for e W(F) ).
" Let 4 =f"(x) be one of these, i.e.u s Fxsf&cardx<d, .
According to the preceding lemma tnere exist ++(«) andx(w)
such that ewadz(u)«-g,‘, zZ)e & and v(w)e Fx=zx@).
Let us denote 4« by A, . Let 4y = Int(u -ftL'Jr 'v'(_us )) . Let
% be the first ardinal such that u,. = 0. Let a’-f‘% vy,
Obviously, &’ 4is dense in 4 . Let us define the function
g on 4'S a as follows:s g(ry) - z(»w,.) for y € V(A&?..).
Similarly on other « = £77(X), X € W(¥). Evidently D(g)
is dense in D(f) and thus D(g) e £ -
Then obviously f = *g .

Thegrem 1. Let X =R, Letfs*X, card TR, 4, <6 (e t).
Then there existe a ¢ such that g =*f and
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(Vxe 3(9 NIg(x)eX& card g (x) < ¢4, 1.

Proof. Let S*X . There is a subset Z of the clsss
X such that (VA e*f)(Ih ex)lh=2h & Wk, )s X].
Let Ir-‘hyzﬂ/&h). Then f €%k, and the assertion follows

from lemma 2.

3. Perputation submodels of the medel V

The reader is assumed to be familiar with both permu-
tation models and permuta{:ion submodels of the V -model,
and with the notation used in [16] and [4]. G"is a group
of permitations of the set @, F a filter on G, G =
= Q(a,G,F) a subclass of M(a) deternining a permute-
tion model (model of the'set theory without the axiom of
regularity). 6) 9— is a group of permutations of the set
ind, F atfilteron @, P=P(@,F) asubclass
of Pof . The class P . determines an inner complete sub-
model (denoted as 5 ) of the model V . This model is
called a permutation submodel of the model V -and axioms
of the theory 3  hold in it (Vopénka and Héjek [16]).

For X eT(a), H(x) 4is the group of all @€ G
such that ¢ X = X, and K(X) is the group of all - ¢ € G
such that ¢ is identical on X . The subgroups FH(x)
and x(a_&) of g, for X € Rf have @ similar meaning, .

Definitiong. Let G be a group of permutations of
a,let F be a filter on "G, o an ordinal, F is cal-
led oy -multiplicative if the imtersection Q)r He of .

6) This is a useful generalization (due to Specker, cf. 1) -
of Fraenkel’s and Mostowski’s methods.
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nts of F belongs
any collection { Hs fje @= of elements g

to F .

Lgmlo Let H’L
ter § be @, -multiplicative for all ¥'€ 7. Let P=
£P(Q,F).en, 1fx & P md cardX<H, ,then x € P .

Proof. Since X(x)=2 .‘)‘C(x)-‘*g‘ P (), the asser-

be a cardinal number. Let the fil~-

tion is obvious.

Theorem 2. Let H’l be a cardinal number, let H’L
€ 6(ct).Let the filter & be @y -multiplicative for
all €7 . Let P= P(@,#). Then, 1 f c* P ana
cand*f <*hy ,then F e P.

Proof. According to theorem 1 there is 9,-*# _ such
that (YxeD (@ )[g(x) & Pheardg(x) < #, ] . By the pre-
ceding lemma, @ (x) belongs to P and thus fe P .

W. Let the axiom of choice be true. Let M
be @ perfect class determining an inner complete model %L.
Let ¢4 be @ cardinal number. Let (x)[xs M&cardx & 4.~
—»X€MJ], Then (FDCH,) holds in X .

Brogf. Let R be @ relation in the model ¥, a € M,
and for every 776 Wy and ge(a¥y =a”A M let the-
re exist an X€ @ -such that<{g x> e R . It follows from
the assumption that &’ A M = a7 (because g &M and
cardg € ¥, 1£ g €a” ). Thus the assumptions of (PDCW)

are satisfied by R, @ and (since the axiom of choice
holds) there 1s an £ € @ “® such that <f*%, f(3)) € R
for every 7 € §)¢o§imc cand f & H,, +  belongs
to M.

ﬂm‘.ﬂhn Ifﬁ.l‘ &(ct): 1aacardina1 numbex-and

- 366 -



¥ is @y -multiplicative for all 7€ 7 , then(PDCH,),
(AC#,) and (WE #,) hold in ¥ _for all cardinals (of
the model Vp ) less than *""z .

4. _The model ©

The model 6 (with parameters 3,9, a,@, ¥ ) 18 a
permutation submodel of the model V (cf.[4],[5]).

Lepmg 4. If the model € has parameters 8, d; a,Z,F
then 6(ct)® Hy . ({ct> 1is the space from The defi-
nition of the model © .)

In this gection the following.theorem is proved for eny
regular special cardinal number H, @

Theorem 4. The parameters /3, o a,‘, @, F can be cho-
sen such that the statement (Vy€a )[(ACH,)& (WEH, )&
& (PDCH, ) & (ACH,) &1(“/5;4,()&1(1’1)(311‘) &1 (0P) nolds in
the model 6 . 4

In the proof the method described in [4] and [5] will be
used. There the following assertion was proved:

Let 1 be a special ordinal, let ¢ be a 7 -boundable’
formula. If there exist ‘o, G, F such that ¢ holds in
the permutation model determined by &(@, G, F), then ¢
holds in a 6 -model with suitably chosen parameters, i.e.

with 3 sufficiently large, d"» 8 and ( &,F> feasible
in reference to - ¢( G, F > ",

Since the formula =1 (ACH )& 1(WEH )& (PDCH )& (OP)
is n -boundable ( 7 is at most a) + 3 ), it is suffi-

7) The mesning of the expressions " % =-boundable formlg"

"{4¢,F> ia feasible in reference to (G, F) " 1s
explained in (5],
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eiemt (according to preceding section, lemma 4 and the fact
%mt 'kp“ is H: in V -model, if 4 & & (et),
(1) to find a permutation model (i.e. the parameters
@,G, F ) in which ¢ holds, and
(11) to choose sufficiently large /2 and f£ind < ¢, F>
feasible in reference to ¢ &, F ) such that F 1is
@y -multiplicative for all 2~ € o€ .

_ Remark. Let G be a group of permutations of the set a.
Let 2" be an ordinal. All subgroups K(e) of G with e §
£a and card € < H,  generate a filter on G which is
denoted by F (@, ). The filter $(@,) on @ has a simi~
lar meaning.

The parameters @, G, F are chosen as follows (cf.
Mpstowski [8]): @ is the union of G pairs {"‘r’ Yo i 5
7eay, G 1s the group of all permutations of @ preserving
every pair {x.r,ryvr;,_ F=F(), Q=& Ca,G,F).

That ¢ holds in the permitation model determined by &
follows (as shown in section 1) from the following theorem.

_ Theorem 5. @) There is no function f€ @ choosing one
element from every pair { X, , %3, 2" € Gk -

b) If X5 Q and caed X= Ho , then there is no f € Q
.npping Gy onto X .

Prodf. Let us prove b) ( a) is analogous). Let x & a,
cardx = H,,1et f€ @ map G, onto X . There exist ¢ = Q,
card e<, such that H({#) 2 K(€). There is a y € @) such
that x,s.x md‘ neither X, nor Y belongs to € . The per-
mutation Q which exchanges X, and Yy and is ident:lcal/
etherwise preserves ¢ but not f, because if § = ‘F“'(.x?; ),

then ¢’ <Xy §‘> - gy £
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which cannot belong to #¢. -
Remark. The set of all pairs {xr,a,r hyeaw, ia well
orderable in this pormutation model and has cardinality #-
Now, choose sufficiently large 3, 0“> 8 and consi-
der .x,,,nh, as pairwise disjoint sets of individuals,
caxd X, = ecard Y, = H,
It remains to find ¢ and & . ) )
Lemgmg 5. A filter F is @, -multiplicative iff the-
re is a bagis B of the filter F such that the intersec-
tion of any collection {Hf}i""r of elements of B be~
longs to F . ‘
lemmg 6. Let G be a group of permutations of the set
@, let H, be a regular cardinal number. Then Flo,) is
Gy -multiplicative for all i€ 77 .
Proof. It suffices to prove that“n K(cf de Flay) it

vy
tca and card & < Hy  for all fe Dy Butf¢f‘?yx(§ )e
-K‘(‘%:s) and m;.%;’f < H, ( “_"l is regular).

The parameters &, § are chosen as follows: ( is
the group of all permutations f#+ of <md which, extended
to @ (let us denote this extension by <wf(n) ), are
permutations of @ and belong to G . Let HS%n in;
eet(pleH} for HeF(a)) and ¥ eFlay ). & is the
filter.generated by all subgroups H%* of 4 ,Where H‘
cFlw,) ma He Fla,). According to [4], < @,F> 1s
feasible in reference to { G, F ) .

Lemma 7. & is @y -multiplicative for all 2~€ o€ .

Brogf. Let o € o, let Hpe Fla)), %fe Flay)

for g‘ea)r and let H-SQ:,H? and & = ‘Q’_ae . It

§
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1e obvidus that . M H¥F = H*  and,since, by lemma 6,

foeawy §

He Fly) and % € Flay ), § 1s @y -multiplicative

by lemmg 5.
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