[1] K. GÖDEL: The Consistency of the Axiom of Choice... Princeton University Press, 2nd printing 1951.
[2] P. HÁJEK:
Syntactic models of axiomatic theories. Bull. Acad. Polon. Sci. 13 (1965), No 4, 273-278.
MR 0184857
[3] A. HAJNAL:
On a consistency theorem connected with the generalized continuum problem. Acta Math. Acad. Sci. Hungar. 12 (1961), 321-376.
MR 0150046 |
Zbl 0102.25001
[4] A. LÉVY:
A generalization of Gödel's notion of constructibility. Journ. Symb. Logic 25 (1960), No 2, 147-155.
MR 0142468 |
Zbl 0119.25204
[5] A. LÉVY: Measurable cardinals and the continuum hypothesis. Notices Amer. Math. Soc. 11 (1964), No 7, iss. 78, 769.
[6] K. PŘÍKRÝ:
The consistency of the continuum hypothesis for the first measurable cardinal. Bull. Acad. Polon. Sci. 13 (1965), No 3, 193-197.
MR 0181575
[7] J. R. SHOENFIELD:
On the independence of the axiom of constructibility. Amer. Journ. of Math. 81 (1959), 537-540.
MR 0106833 |
Zbl 0201.32702
[8] R. M. SOLOVAY:
Measurable cardinals and the continuum hypothesis. (printed thesis), mimeographed.
Zbl 0289.02044
[9] P. VOPĚNKA:
The limits of sheaves and application on construction of models. Bull. Acad. Polon. Sci. 13 (1965), No 3, 189-192.
MR 0182570
[10] P. VOPĚNKA:
On $\nabla $-model of set theory. Bull. Acad. Polon. Sci. 13 (1965), No 4, 267-272.
MR 0182571
[11] P. VOPĚNKA:
Properties of $\nabla $-model. Bull. Acad. Polon. Sci. 13 (1965), No 7, 441-444.
MR 0189984
[12] P. VOPĚNKA:
$\nabla $-models in which the generalized continuum hypothesis does not hold. Bull. Acad. Polon. Sci. 14 (1966), No 3, 95-99.
MR 0200142
[13] P.VOPĚNKA, P. HÁJEK.:
Permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 13 (1965), No 9, 611 -614.
MR 0194320 |
Zbl 0143.25805
[14] P. HÁJEK, P. VOPĚNKA:
Some permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 14 (1966), No 1, 1-7.
MR 0194321