Previous |  Up |  Next

Article

Keywords:
discrete processes; continuous processes; convergence of discretisations; boundary value problems; minimizing problems; Newton's iteration and Newton's flow; discrete evolutions; systems of nonlinear equations
Summary:
We prove a convergence result for a time discrete process of the form $x(t+h)-x(t)=hV(h,x(t+\alpha_1(t)h), ..., x(t+\alpha_L(t)h)) t=T+jh, j=0, ..., \sigma(h)-1$ under weak conditions on the function $V$. This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.
References:
[1] Boggs P. Т.: The solution of nonlinear systems of equations by A-stable integration techniques. SIAM J. Numer. Anal. 8 (1971), 767-785. DOI 10.1137/0708071 | MR 0297121 | Zbl 0223.65047
[2] Bohl E.: Finite Modelle gewöhnlicher Randwertaufgaben. Teubner Studienbücher, B.G. Teubner, 1981. MR 0633643 | Zbl 0472.65070
[3] Bohl E.: Mathematische Grundlagen für die Modellierung biologischer Vorgänge. Springer Hochschultexte, Springer, 1987. MR 1032759 | Zbl 0643.92001
[4] Bohl E.: Mathematik und Leben, Die Frage nach dem Leben. Serie Piper (Fischer, E.P., Mainzer, K., eds.), 1990, pp. 233-263.
[5] Bohl E.: On the convergence of time-discrete processes. to appear in ZAMM 1993. MR 1302474
[6] Collet P., Eckmann J. P.: Iterated Maps on the Interval as dynamical Systems. Progress in Physics, Vol. 1, Basel. Zbl 0458.58002
[7] Dahlquist G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4 (1956), 33-53. DOI 10.7146/math.scand.a-10454 | MR 0080998 | Zbl 0071.11803
[8] Dennis J. E., Schnabel R. B.: Numerical Methods for Unconstrained Optimisation and Nonlinear Equations. Prentice-Hall Inc., Engelwood Cliffs, New Jersey, 1983. MR 0702023
[9] Gill P. E., Murray W., Wright M. H.: Practical Optimization. Academic Press, London, New York, 1981. MR 0634376 | Zbl 0503.90062
[10] Grigorieff R. D.: Numerik gewöhnlicher Differentialgleichungen 1, 2. Teubner Studienbücher, B.C. Teubner, 1972. MR 0468207
[11] Hairer E., Wanner G., Norsett P. S.: Solving Ordinary Differential Equations I. Springer-Verlag, 1980. MR 1439506
[12] May R.: Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459-467. DOI 10.1038/261459a0
[13] Michaelis L., Menten M. L.: Die Kinetik der Invertinwirkung. Biochem. Z. 49(1913), 333-369.
[14] Ortega J. M., Rheinboldt W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York, San Francisco, London, 1970. MR 0273810 | Zbl 0241.65046
[15] Schropp J.: Global dynamics of Newton's flow. in preparation.
[16] Werner J.: Numerische Mathematik I. Vieweg, Braunschweig/Wiesbaden, 1992.
[17] Wissel C.: Theoretische Ökologie. Springer, Berlin, Heidelberg, New York, 1989.
Partner of
EuDML logo