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DISCRETE EVOLUTIONS: CONVERGENCE AND APPLICATIONS

ERICH BOHL, JOHANNES SCHROPP, Konstanz

Summary. We prove a convergence result for a time discrete process of the form
z(t+ k) —z(t) = hV(h,z(t + a1 (t)h),...,z(t + ar(t)h))

t=T+jh j=0,... 0(h)—1

. under weak conditions on the function V. This result is a slight generalization of the con-
vergence result given in [5]. Furthermore, we discuss applications to minimizing problems,
boundary value problems and systems of nonlinear equations.

Keywords: discrete processes, continuous processes, convergence of discretisations,
boundary value problems, minimizing problems, Newton’s iteration and Newton’s flow

AMS classification: 65L99

0. INTRODUCTION

0.1. The literature on discrete processes is full of iterations [4, 6, 12, 17] of the
form

(1) z(t + h) — z(t) = hV(z(2)).

This equation simply says that the new information z(t + h) at the new time ¢ + h
equals the old information z(t) at the old time ¢ plus a term which describes the
variation occurring during the elapsed time h. This term is proportional to the time
h with a function of proportionality which typically depends on the old information
z(t) which is an n-dimensional vector with real components.

In numerical analysis a standard problem is to solve a system F(x) = 0 of N
equations with the same number of unknowns. A typical approach [2, 8, 14] is an
iterative process

2) 2(t + ) = 2(t) = ~hA(z()) F(x(1))

with a ‘damping factor’ h. A(z(1)) is a real (N, N)-matrix which typically tries to
approximate the inverse of the Jacobian DF(z(t)). (2) is then sometimes called a
damped Newton-like method.
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Another standard problem [8, 9, 16] is the minimization of a real-valued function
f of N unknowns:

©)) f(z) < f(y) for y€RN.

The widely used descent methods are of the general form

(4) z(t+ h) — 2(t) = —hp(=(t))

where the vector p(z(t)) sometimes tries to approximate the gradient grad f(z(t)) of
the function f at the point z(t).

Finally, multistep methods [7, 10, 11] for the numerical treatment of ordinary
differential equations read

(5) o(t + h) — 2(t) = bV (h, z(t + h), z(t), . . ., z(t — kh))

where £ is a fixed natural number and h > 0 denotes the step width. There are other
types of multistep methods. However, most of them can be cast in the form (5).
Obviously, (1), (2), (4) and (5) are special cases of the process

(6)  x(t +h) —z(t) = hV(h,z(t + ar(t)h), 2(t + aa(t)h), ..., z(t + ar(t)h)).
With the definition

(M) 2t h,z) = (2t + ar(O)h), ..., z(t + (), a;(t) €Z, j=1,...,L
(6) can be written as

(8) 2(t + h) — z(t) = hV(h, 2(t, h, z)).

Depending on the integers a;(t), (8) may be an explicit or implicit process. It is
even possible that a successive solution as suggested by (6) is not possible.

0.2. In [5] we have proved a general convergence result on processes (6) under
special conditions for the constants aj,j = 1,..., L. In this paper we generalize this
result slightly allowing for more freedom in choosing the integers a;j. Our theorem
states, roughly speaking, that the solutions of (6) behave for h > 0 small enough like
the solutions of the differential equation

9) z(t) = V(0,2(¢,0,2)) = V(0,z(t), . .., z(t)).

This has implications for the special processes (2) and (4) which might break down
on the grounds that the ‘damping factor’ h is forced to be chosen unrealistically
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small. This suggests that the first order system (9) is stiff and calls for a treatment
by an A-stable method which typically is not explicit [7, 10, 11] as (2) or (4) but an
implicit procedure. Our point is that an ‘explicit’ method like (2) to find a zero of an
N-dimensional system F(z) = 0 or like (4) to treat the unconstrained minimization
problem (3) might be inappropriate. This point was already made 20 years ago by
Boggs [1]. His work seems to have been overlooked since then. We discuss this in
more detail in Section 2 and give numerical examples for our point. In Section 1
we state the theorem and comment on the proof as far as the arguments change in
contrast to our paper [5]. Hence, we concentrate on two parts of the proof where
slight changes compared to [5] are necessary. Finally, in Section 3, we comment
on two-point-boundary-value problems for second order scalar equations. Here, a
convergence proof of the classical finite difference method is derived from our main
theorem in Section 1.

We finally mention a technical point: We refer to formula (i) in Section j as (j.i)
and we drop the Section index j if we refer to formula (i) in the current section.

1. THE MAIN RESULT

1.1. We consider two real numbers h > 0, T defining the grid points T + jh,
J € Z. Furthermore, let S > T define the natural number o(h) via

1) —h<S—(T+a(h)h) 0.
Finally, we consider integers
(2) ap(T + jh) € Z, |ar(T + jh)| < 0, 0 independent of j, h,k,

j=0,...,0h)-1,k=1,...,L

to define z(t, h, z) in (0.7) so that our system reads

z(t+h) —z(t) = hV(h,2(t, h,z))

3) t=T+jh, j=0,...,0(h)—1
z(t + ar(t)h) = z(T) if t+ar(t)h<T
z(t + ap(t)h) = (T + o(h)h) if T+ o(h)h <t+ ar(t)h.
We assume

(4) V € C(Ry x REN RV)
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[IV(h,u)lls <M if 0<h< ho, ueREN

where || |ls denotes the maximum norm in RY. Then, (3) is a system of Na(h)
equations of N(o(h)+ 1) unknowns: a(h)+ 1 counts the number of grid points in the
interval [T, T + o(h)h]. Hence, there are N more unknowns than we have equations
in (3). We might interpret the first line in (3) as a discrete evolutionary process
which is observed in a finite time interval [T, S]. Any solution z"(t) of (3) is, in
the first place, only defined at the grid points. However, we always consider z"(¢)
as a continuous function on the whole real axis R after linear interpolation between
consecutive grid points and constant extension to the right of the most right grid
point and to the left of the most left grid point. We refer to the resulting object as
a grid function on R.

1.2. Theorem. Consider the system (3) under the assumptions (2) and (4). Let
hn, > 0 be a real sequence tending to zero such that the corresponding system (3)
has a solution z"~(t) with

(5) llz*(T)l| = O(1) as ho — 0.

Then there is a function v € C*[T, S] which solves the differential equation
(6) o(t) = V(0,2(¢,0,v)), TSt S.

Furthermore, there exists a subsequence of z"»(t) such that

(M max{|lv(t) — z"*(t)lls: t € [T, S]} =0 as n— oo

holds. Notice that we did not change notation passing from the sequence z"(t) to
a subsequence.

1.3. A proof of Theorem 1 is given in [5] for the special case
(8) ar(T+jh)=—(k-2), k=1,...,L, j=1,...,0(h), L>2

of the integers (2). Obviously, the uniform bound g required in (2) is ¢ = max{|k—2|:
k=1,...,L} for (8). Assuming (8) we have

9) z2(t, h,z) = (z(t + h), z(t),z(t = h),...,z(t — (L — 2)h)).

We have also discussed in [5] that the assumption in the second line of (4) which
requires a uniform and global bound for the function V is essentially without loss
of generality: This is because we restrict our attention to a compact interval [T}, 5]
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so that any solution of the differential equation (6) is bounded and we can replace
V(h,u) by the globally bounded function

V) (h,u) = V(h, ud(u/n))
with a natural number n appropriately chosen. Here, ®(u) is defined via
O(u) = p(ur)p(uz) ... p(uLn), v = (wr,...,uLn),

p€CR), |p(s)| <1 in R,
p(s) =1 if [s| <1, ¢(s) =0 if [s| >2

We finally note that z(t, 0, v) = (v(t), v(t), ..., v(t)) € RNE follows from (0.7) so that
the limiting differential equation (6) actually reads

(10) (t) = V(0,u(t),...,u(t)), T<t<S.

1.4. We already mentioned in 0.1 that the processes (0.1), (0.2), (0.4) and (0.5)
are special cases of (3) if we complete (3) by initial conditions. Obviously, then, the
assumption (5) of our theorem is satisfied and the limiting differential equation (6)
can be completed by the initial conditions

i zM(T) = w e RV.

Then we have proved in [5] that convergence in the sense of

(12) max{||v(t) — "(t)||s: t € [T, S]} =0 as h—0
holds if the initial value problem

(13) v(t) = V(0,2(¢,0,v)), T<tLS, o(T)=w

has at most one solution. Since this is generically the case, we have (12) in a generic
situation. Notice, however, that we must assume the solvability of the system (3)
along with the initial conditions (11) for any h appearing in (12).

In this sense, the special processes considered in 0.1 have an initial value problem
as a continuation if the ‘damping’ h tends to zero. In particular, the differential
equations to (0.1), (0.2), (0.4) and (0.5) are

2(t) =V((t)), T<t<S,

(14) &(t) = —A(z(1))F(z(t)), T<t<S,
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#(t) = —p(z(t)), T< LS,
i(t) = V(0,z(t),...,z(t)), Tt LS,

respectively. If, for example, (0.2) is exactly Newton’s method to find a zero for F,
then the second differential equation in (14) is Newton’s flow. Similarly, if we use in
(0.4) the gradient direction to find a minimum of f, then the continuous extension
of (14) is the differential equation

(15) £(t) = —grad f(z(t)), T<t < S.

1.5. The proof of Theorem 1.2 is only slightly different from the proof given in
[5] so that we give only some hints to the arguments which are new here. Therefore,
we concentrate on two parts in the proof where the difference appears in the more
general situation. First of all, linear interpolation between grid points yields the
representation

(16) zh(s) — 2" (1) = V(h, z(t, h, "))(s — 1)

fort<s<t+h, t=T+jh, j=0,...,0(h)—-1

from which we conclude
(17) llz"(s) — " (t)|ls < M|s—1t], if T<s, t<S
as in [5]. A consequence is

e Olls < ll2"(Dlls + l2™(T) = 2" ()]s

(18) < M|t =T|+||2*(T)|ls < M|S = T| + ||="(T)|ls
if TS

so that our assumption (5) immediately implies

(19) max{||z*(®)|ls: T <t < S} =0(1) as h— 0.

The Lipschitz condition (17) uniform in h > 0 and the bound (19) uniform in
t € [T, S] and in h > 0 allows the application of the Arzéla-Ascoli-Theorem which
implies that there exists a function v(t) = (vi(2),...,vn(t)), T <t < S with con-
tinuous components v; € C[T,S],j = 1,..., n satisfying

(20) max{|lz" (1) = v(t)||s: T <t < S} =0 as n — oo.
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In an attempt to prove that the function v(f) has actually C'-components, we
must estimate the difference

/ V(0, 2(s, 0, v))ds-Zhv (h, z(t,, h, =)

r=0

t J
(21) = /T V(0,2(s,0,v))ds — Y hV(0,2(t,,0,v))

Jj
+ Y A[V(0, 2(tr, 0,v)) — V(h, 2(t,, b, z*))]

r=0

(compare [5]). Here, t € (T, S],h > 0 are fixed numbers and 0 < j := j(h,t) < o(h)
is uniquely defined by

(22) t; <t <tjyy,tj =T+ jh.
In particular, we must show that
(23) max{||V(0, z(s,0,v)) = V(h,z(s,h,z"))|ls: s =T+ kh, k = 0,...,0(h) — 1}
—0 as h—0
(compare [5]). To this end, we consider the two z-components in (23)
(24) 2(s,0,v) = (v(s),...,v(s))
2(s, b, z%) = (z*(s 4+ a1(s)h), ..., z* (s + ar(s)h)).
The individual vector components can be estimated as follows

llo(s) = 2" (s + er(s))lls < llv(s) = 2" (s + 1" () — 2" (s + ar(s)h)ls

(25) < max{||v(s) — zP(s)||s: T < 5 < S} + Mlax(s)|h

< max{||v(s) — z*(s)|ls: T < S} + Moh.

This shows that they are as close together as we want if we choose h > 0 appropriately
small. Moreover, the estimate in (25) is uniform in h. Therefore, if & is small enough,
all components of the independent variables of the V-function appearing in (23) are
uniformly close together. By the uniform continuity of the continuous function V on
a compact set, the limit (23) follows.

The rest of the proof is verbatim the same as in the special case treated in [5].

272



2. NEWTON’S METHOD, GRADIENT METHOD
AND CONJUGATE GRADIENT METHOD.

2.1. In this Section we consider more closely the process (0.2) in the special form
of damped Newton’s method

(1) z(t + h) — z(t) = —hDF (z(t)) " F(x(t)), z(0) = u.
The corresponding continuous extension is the initial value problem
(2) &(t) = —~DF(2(1))" F(z(1)), z(0) = u

whose solutions ¢(¢, u) are known as Newton’s flow.
It is obvious that any stationary solution & of (2) such that the Jacobian DF(Z)
is non-singular, satisfies the condition

3) F(z)=0.
The derivative of the right-hand side of (2) at such a stationary point is
(4) D(—DF(z)"'F(2))g=z = 1.

This means that the stationary point is (asymptotically) stable, implying that there
is a neighbourhood U(Z) such that for any initial condition z(0) = u € U(Z) the
solution ¢(t,u) tends to F as t — +o00. This takes care of the local behaviour of
#(t,u) in a neighbourhood of a stationary point. A global result reads as follows and

will be proven in a forthcoming paper:

Theorem [15]. Let ¢(t,u) be a solution of (2) for all t > 0. If its w-limit set is
nonempty, then there exists a z € RV satisfying

F(2)=0, p(t,u) = 2 as t — +oo.

We may expect that damped Newton’s method (1) follows Newton’s flow closely
if h > 0 is small enough. Therefore, the theorem and the local argument given above
describe all initial points such that damped Newton’s method (1) is convergent to a
zero of the vector field F. Hence, if Newton’s method (h = 1) in (1) is not convergent,
the damping technique can only provide a remidy if the initial approximation z(0) =
u is chosen as just described. In this sense, all basins of attraction for (1) are
essentially given by the basins of attraction of Newton’s flow (2).
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Even if the damping technique is successful and leads theoretically to a convergent
sequence, it is well possible that the damping h may have to be taken unacceptably
small so that practically (1) is not a reasonable method to solve (3). This situation
will occur if the initial value problem (2) happens to be a stiff problem. Then,
typically, explicit methods as (1) are not reasonable. To solve (2), we rather must go
for A-stable formulae which are typically implicit. We remark that, to our knowledge,
this was done by Boggs [1] for the first time.

2.2. This argument can be demonstrated very nicely for the process (0.4) if we
use the gradient method

(5) z(t + h) — z(t) = —hgrad f(z(t)), z(0) = u

as a special case. The corresponding continuous extension is

(6) #(t) = —grad f(z(1)), =(0) = u

(compare (1.14)). If (6) turns out to be stiff, then the explicit scheme (5) to solve
(6) needs an unrealistically small step width h so that the gradient method (5)
practically cannot be used. It must be replaced by a stiff (A-stable) solver. This
situation occurrs quite often in the applications. A particularly simple case is the
following:

2.3. In the theory of enzyme actions, Michaelis-Menten kinetics is very popular.
It is the simplest possibility for a mechanism governing an enzyme which transforms
a substrate into a product. The Michaelis-Menten theory says that the velocity
v to transform the concentration w of a substrate depends on w via the rational
expression

. pw .
7 = K)= 0, K
(M) v =g(w, p, K) Ko M >0

with appropriate constants pu, K. This expression looks very simple. It, however,
leads to a very uncomfortable fitting problem since the constant K typically is posi-
tive but much smaller than u. Then, gg;(w, i, K) explodes if w is in a neighbourhood
of zero.

w 3330 .1670 .0833 .0416 .0208 .0104 .0052
v 3.636 3.636 3.236 2.666 2.114 1.466 .866

Table 1: Invertase reaction (taken from [3, 13])
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To be more precise, consider the pairs (w,v) given in Table 1, which are taken
from actual measurements in [13]. These numbers belong to the rational expression
(7) with appropriate constants g, K. To recover these constants from the data in
Table 1, we apply the method of least squares and minimize the sum of squares

7
(®) f(=) = fp, K) =Y (g(wi, p, K) = vi)*.

i=1
Using (5) to solve the least square problem, we find the solution
= (i, K)=(391,1.78E~-2)

for sufficiently many starting points (o, Ko) and h = 10~5. There is no way of
obtaining convergence for a step-width h which is greater than 10~3 so that the
computational work is tremendous.

To demonstrate the dependence of the step-size h used in the process (5) on the
stiffness of the underlying differential equation (6), we modify the function g in (7)
and consider

~ vw
9) g(w,a,v, k)= P
The corresponding sum of squares reads
- 7
(10) f(a,l/,'i?)ZZ(!](UJ;',(I,U,K.)—U,')Z.

i=1

We fix @ and minimize (10) with respect to v, k. We can regulate the stiffness of the
underlying differential equation

(11) z= —grad}(a,z), z:=(v,K)

varying the constant a. To demonstrate this, we give the eigenvalues of the lineariza-
tion of the right-hand side in (11) for six values of a in Table 2.

« 0.01 0.1 1 10 100 1000

A 0762 285 29 2.9 2.9 2.9
Az 8.074215.72.119-10% 2.118- 10° 2.117 - 10° 2.1 - 10'°
stiffness: 32 10.59 75.68 3400  7.3-10° 7.3-107 7.3-10°

Table 2: Aj, Ay are the eigenvalues of ;"(a, 7,R)
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We see that the quotient of the two eigenvalues explodes if the constant « increases.
It is obvious that a minimizer (7, &) for (10) is given by

(12) v=p=391, k:%za-‘usw—z.

Calculations show that any step length h < 0.2 is appropriate for « = 0.01 in the
gradient method applied to the least square process for (8). This is to be compared
with A = 1075 for & = 1. Column 3 in Table 2 shows that the problem is stiff for
a = 1 and unstiff if « = 0.01.

2.4. The reader might think that the conjugate gradient method in its precondi-
tioned form (compare [9])

z(t + h) — z(t) = 1(t)p(=(1))

(13) Pa(t)) = W= (=(O) f'(2(1)) + Bt — W)p(a(t — )
F(=0)T W =) f (=(0)
PO T 0)pE D)
@)W ) W)
=) = G = WG = h) =t = B)

would be more appropriate to deal with the problem outlined in 2.3. This process
may be put in our standard form

v(t) =

(14) z(t + h) = z(t) + hV(h, z(t), z(t - h)),

V(h,z(t),z(t — h)) = =W~ (z()) f'(z(t)) + z(t) — z(t = )

if we assume v(t) = B(t) = h for all grid points ¢. Hence, if we simplify and put
the functions v(t), 3(t) constant, our Theorem 1.2 says that the process (13) has a
continuous extension which is given by the differential equation

(15) &(t) = =W (z() f'(z(1))-

Actually, (14) is an explicit two-step method to solve the differential equation
(15). An explicit procedure is never able to solve stiff equations in a satisfactory
way. Therefore, we expect problems even for the preconditioned conjugate gradient
method if stiffness is more and more pronounced. Table 3 gives our results:
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Method Omaz
Conjugate gradients 0.03
Preconditioned conj. gradients 40
Explicit two-step-methods ~ 2
A-stable ODE solver > 1000

Table 3

The first column in this table identifies different methods to solve our least-
square problem: A conjugate gradient method without preconditioning is (13) with
W(z(t)) = I. As an A-stable ODE solver (last row in Table 3), we have used the
NAG-routine DO2EBF. In the second column, we give the maximal constant « such
that the corresponding least square problem could be successfully treated by the
method in the first row. For example, the conjugate gradient method was successful
for all constants 0 < o < 0.03. We see that even the preconditioned conjugate gradi-
ent method is unsuccessful if & > 40, whereas the A-stable ODE solver DO2EBF of
the NAG library could manage values of @ which exceed 1000. With more and more
stiffness, however, the arithmetic of the computer comes into the game and plays an
essential role for the success even of the A-stable ODE solver.

3. BOUNDARY VALUE PROBLEMS

3.1. In [5] we have considered the system

p(zs(0) + 2) (@t + ) = 21(0)) = hea()

(1) zo(t + h) — z2(t) = —hf(z,(t + h))
z3(t+ h) — z3(t) = h
t=a+jh, j=0,...,0(h)-1
along with the sight conditions
(2) a:z1(7) = Brz2(7) = 77 (21(a), z2(a), z1(b), z2(d)), T = a,b
g >0, ap <0, 20, T=a,b
and the initial condition
3) z3(a) = a.
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As in [5], we assume
(4) f,pECR), p(t) >0, 0< f(n) < M, neR

Ir € C(R4?R)! |77(z)| s M! z€ R41 T= aab

as well as
(5) b=a+a(h)h

for convenience. It is clear from [5] that (1) can be written as

p(t + -'21)(:1(: +h) — 21(t)) = hza(t)

©) 2(t + h) — 25(t) = —hf(z1(¢ +h))

t=a+jh, j=0,...,0(h)-1.

Furthermore, we have shown that the assumptions of Theorem 1.2 are satisfied for
(1) if we complete the system with (2), (3). Moreover, the first component v;(t)
of the function v guaranteed by Theorem 1.2 is a solution of the boundary value
problem

(@) (P(H)1(1)) + f(n1(t)) =0 in [a,b],

arvi(7) = Brp(r)vi (1) = 7:(v1(a), p(a)v(a), v2(b), p(b)v} (b)), T = a,b.

3.2. In this Section we are going to consider a slightly perturbed system with
about half as many equations as (6) and the same convergence properties as (1), (2),
(3). This comes from the fact that any solution of (6) solves the equations

® (1= 5)ae-n+ (p(-3) +o(t+3) ) 20 -p(t+ §)rrte+ ) =

= h*f(zi(t)), t=a+jh, j=1,...,0(h) -1

as we have shown in [5]. Conversely, any solution of (8) can be extended to a solution
of (6) if we define z5(t) by the first equation in (6) fort = a+jh, j =0, ..., 0(h) -1
and by the second equation in (6) for ¢ = a+ o(h)h. Therefore, it is enough to solve
(8) along with (2). However, this system has two more unknowns zs(a), z2(b) than
equations. A standard way out of this dilemma is a replacement of (2) by

9) arz1(7) = Brz(r) = vr(21(a), 2(a), 21(b), 2(b)),
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2hz(7) := p(T)(z1(T + h) — 21(7 — h)), T =a,b.
Now, z2 is eliminated. However, the extra grid points @ — h,b+ h appear. To find
two extra equations we extend (8) and consider

(10) —p(t- g)z,(z — h)+ (p(t - ’5') +p(t+ g)) ()~ p(t+ g)xl(t +h)
= h%f(z\(1)), t=a+3jh, 5=0,...,0(h).

The resulting system (9), (10) has as many scalar unknowns as it has equations.
Obviously, this system has the same solutions as

p(t+ g)(zl(t +h) = 23(1)) = has(t)

(11) za(t + h) — z2(t) = —hf(z1(t + h))
t=a+jh, j=-1,0,1,...,0(h)

along with (9). This system is of our standard form and Theorem 1.2 applies. To
test the assumption (1.5), we note that we can write (9) as

arz1(7) = Br Br(h)z2(7) = ¥+ + Brqs(h, z2(7), z2(T — h))

(12) gt = 2 {p(rir%ﬁ (rl—-)]

gr(h,u,v) = (p('r) [v—u], r =a,a+ o(h)h.

This is a boundary condition very similar to (2) with (4) so that the reasoning in [5]
to prove (1.5) for (1), (2), (3) takes over verbatim to (11), (12).
We are left with the transformation of (9) into (12): To this end we notice

2hz(1) = p(r)(z1(7 + h) — 21(7) + 21(7) — 21(7 — b))

_ .r z2(7) zo2(r = h)
9 B e p(r—%>]

= ! ! za(T ___p() zo(T7 — h) — zo(T
*"”")[,,(Hg)*,,(f_g)] 2(r) 4 he P = ) = 2a(r)

- = 2hB;(h)z2(7) + 2hgs (h, z2(1), z2(t — 7).
Inserting the representation (13) into (9) yields (12).
The representation (12) also shows that, for h — 0, the boundary conditions in (7)
are obtained. We already proved in [5] that the differential equation in (7) results as
the limit problem.
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