[1] E.L. Allgower, K. Böhmer:
Application of the mesh independence principle to mesh refinement strategies. SIAM J. Numer. Anal. 24 (1987), 1335-1351.
DOI 10.1137/0724086 |
MR 0917455
[2] E. L. Allgower K. Böhmer F. A. Potra, W. C. Rheinboldt:
A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23 (1986), 160-169.
DOI 10.1137/0723011 |
MR 0821912
[3] O. Axelsson:
On global convergence of iterative methods in Iterative Solution of Nonlinear Systems of Equations. LNM # 953 (editors R. Ansore et al), Springer Verlag, 1980.
MR 0678608
[4] O. Axelsson: On the global convergence of Newton step nonlinear generalized conjugate gradient methods. Report 9118, Department of Mathematics, University of Nijmegen, the Netherlands, 1991.
[5] O. Axelsson V. Eijkhout B. Polman, P. Vassilewski:
Incomplete block-matrix factorization iterative methods for convection-diffusion problems. BIT 29(1989), 867-889.
MR 1038134
[6] O. Axelsson, B. Layton: A two-level methods for the discretization of nonlinear boundary value problems. Report, Department of Mathematics, University of Nijmegen, the Netherlands, 1992.
[8] P. Deuflhaard, F. A. Potra: Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem. Preprint SC 90-9, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1990.
[9] L. V. Kantorovich: On Newton's method for functional equations. Dokl. Akad. Nauk SSSR 59 (1948), 1237-1249.
[10] M.M. Vainberg:
Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Wiley, New York, 1973.
MR 0467428 |
Zbl 0279.47022
[12] T. Yamamoto:
A unified derivation of several error bounds for Newton's process. J. Соmр. Appl. Math. 12/13 (1985), 179-191.
MR 0793952 |
Zbl 0582.65047