Article
Keywords:
invariant region; vanishing viscosity; nonlinear parabolic system; quasilinear one- dimensional telegraph equation
Summary:
A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty$ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
References:
[1] K. N. Chueh C. C. Conley J. A. Smoller:
Positively invariant regions for systems of non linear diffusion equations. Indiana Univ. Math. J. 26 (1977), 372-7411.
MR 0430536
[4] M. Rascle:
Un résultat de ,,compacité par compensation à coefficients variables". Application à l'élasticité nonlinéaire. Compt. Rend. Acad. Sci. Paris, Série I, 302 (1986), 311 - 314.
MR 0838582
[6] D. Serre:
La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace. J. Math. pures et appl. 65 (1986), 423 - 468.
MR 0881690
[7] T. D. Venttseľ:
Estimates of solutions of the one-dimensional system of equations of gas dynamics with "viscosity" nondepending on "viscosity". Soviet Math. J., 31 (1985), 3148- --3153.
DOI 10.1007/BF02107558
[8] E. Feireisl:
Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations. Apl. mat. 35 (1990), 192-208.
MR 1052740 |
Zbl 0737.35040