Previous |  Up |  Next

Article

Keywords:
invariant region; vanishing viscosity; nonlinear parabolic system; quasilinear one- dimensional telegraph equation
Summary:
A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty$ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
References:
[1] K. N. Chueh C. C. Conley J. A. Smoller: Positively invariant regions for systems of non linear diffusion equations. Indiana Univ. Math. J. 26 (1977), 372-7411. MR 0430536
[2] C. M. Dafermos: Estimates for conservation laws with little viscosity. SIAM J. Math. Anal. 18 (1987), 409-421. DOI 10.1137/0518031 | MR 0876280 | Zbl 0655.35055
[3] R. J. DiPerna: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82 (1983), 27-70. DOI 10.1007/BF00251724 | MR 0684413 | Zbl 0519.35054
[4] M. Rascle: Un résultat de ,,compacité par compensation à coefficients variables". Application à l'élasticité nonlinéaire. Compt. Rend. Acad. Sci. Paris, Série I, 302 (1986), 311 - 314. MR 0838582
[5] D. Serre: Domaines invariants pour les systèmes hyperboliques de lois de conservation. J. Differential Equations 69 (1987), 46-62. DOI 10.1016/0022-0396(87)90102-1 | MR 0897440 | Zbl 0626.35061
[6] D. Serre: La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace. J. Math. pures et appl. 65 (1986), 423 - 468. MR 0881690
[7] T. D. Venttseľ: Estimates of solutions of the one-dimensional system of equations of gas dynamics with "viscosity" nondepending on "viscosity". Soviet Math. J., 31 (1985), 3148- --3153. DOI 10.1007/BF02107558
[8] E. Feireisl: Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations. Apl. mat. 35 (1990), 192-208. MR 1052740 | Zbl 0737.35040
Partner of
EuDML logo