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TIME-DEPENDENT INVARIANT REGIONS
FOR PARABOLIC SYSTEMS
RELATED TO ONE-DIMENSIONAL NONLINEAR ELASTICITY

EDUARD FEIREISL
(Received January 5, 1989)
Summary. A parabolic system arising as a viscosity regularization of the quasilinear one-
dimensional telegraph equation is considered. The existence of L, — a priori estimates, in-

depzndent of viscosity, is shown. The results are achieved by means of generalized invariant
regions.
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In this paper we consider the a priori estimates of solutions of parabolic systems
{Se}po:
(sH U, — v, + au =c¢Au,
(S2) v, — o(x, t,u), + av = edw + f
where the periodicity conditions
(P) ulx + L 1) = u(x, 1), vx+1,t)=0v(x1)
are imposed on the couple of unknown functions u, v of x, t € R'.

Here a,,a, > 0 are strictly positive constants, the symbols A,, 4, stand for
differential operators representing ,,artificial viscosity” added to the original system

(Sl) u!—ux+a1u=0’
(S?) v, — o(x, t,u), + ap = f.

The problem just outlined arises in the study of the one-dimensional damped
wave equation of the form

(E) Uy, + dU, — o(x,t,U,), + aU = f,
the functions u, v being determined by the relations

u=U,, v=U,+a,U whered =a;,+a>,, a=a;.a,.

184



Taking the recent results of the compensated compactness theory into account
(see DiPerna [3], Serre [6], Rascle [4]) we expect some boundary value problems
connected with (E) to be solved via the method of vanishing viscosity, that is, the
solutions are constructed as limits of solutions of the perturbed systems {S,},>o,
e\ 0.

To carry out such a program, a priori estimates on the functions (u, v), independent
of & have to be found to induce the convergence of approximate solutions almost
everywhere. In view of [3] it suffices to look for L, -estimates, which forms the bulk
of the present paper. In the forthcoming publication [8] we intend to apply these
results to the problem of existence of time-periodic solutions related to (E).

Since a nonautonomous problem is involved (a does depend on x, t), neither the
method of Chueh, Conley, Smoller [1] nor the technique of Dafermos [2] (cf. also
Serre [5], Venttsel’ [7]) seem to be applicable to our situation in a direct way.

We introduce the concept of time-dependent invariant regions (see Section 1),
the existence of which results from the presence of the damping terms a,u, a,v in the
equations.

Also, the operators A,, 4, are to be chosen properly to obtain positive results.
Note in passing that, in the autonomous case, the choice 4, = A, = 4 is well
known to ensure the desired estimates (see [1], [2]).

The main idea we use here is closely related to the paper [1] and seems to be quite
simple though some computations turn out to be rather lengthy (see Section 2).

Throughout the whole text, the symbols ¢ or ¢;, i = 1, ... will denote strictly
positive real constants.

1. MAIN RESULTS

Consider a Cauchy problem resulting from {S,},, by adding the initial conditions
1)) u(x,0) = u°(x), o(x,0) = 0(x)

where u°, v° € C(R") satisfy (of course) the condition (P).
Whenever speaking about a solution of the problem {S,}, (I) we mean a classical
one, i.e. a pair (u, v) of continuous functions on the strip

Q ={(x1)| xeR", te[0,1,)}
with all derivatives appearing in the equations continuous on
int @ ={(x,1)| xe R, 1€(0,1,)},

u, v satisfying (S, ), (S2) on int Q as well as the conditions (P), (I).
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As to the data we deal with, let us assume the following:

(Cy) The function o = o(x,t,u): R* > R' is smooth, satisfies (P) with respect
to x, and the growth restrictions

(1.1) ofx,t,u) 2 ¢; >0,
(12) IJXI‘ [O’,l, Iaxul’ lalu s Iaxxu| é Cs
hold for all x, t, u.
Moreover,
(1.3) lim o,(x, t,u) = +00 uniformly in x,t
u—t 0
and
(1.4) ‘ o,(x, t,u)u >0 whenever u 0.

(C)) f=f(x,1): R* > R' is a continuous function satisfying (P) and uniformly
bounded, i.e.

(1.5) |f(x, t)I <cy forall x,t.
The presence of the variables x, t in ¢ is the reason why we introduce the notion

of a time-dependent invariant region.

Definition 1. 4 set M = R* is called an invariant region related to the system
{S.} if any solution (u, v) of {S,}, (I) satisfying

(1.6) [x,0,u%x), °(x)]e M, xeR'
remains in M for all t belonging to its domain of existence; more specifically,

(1.7) [x, 1, u(x, t), v(x, )] e M

holds for all x e R*, t € [0, t,).
Consider now the Riemann invariants

r(x, t,u, v)=v+ 6 V(olx, 1, 2))dz,
s(x, t,u,0) = v — [§ J(0x,1,2))dz.
Next, denoting
Y(x, t,u) = E(—xit’;z) dz
(o] U"(x, t7 Z)
we set
A =ug, + ¥Y(x, t,u),,

A =v,, .
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Finally, being motivated by [1] we define the set
(1.8) M = M(c) = {(x, t,u, u)l —c=r,s=c}.

Our main goal is to establish the following result.

Theorem 1. Let the conditions (C,), (C,) be satisfied.

Then the set M determined by (1.8) forms an invariant region for the system
{SE} provided the number c is large enough.

The sufficient magnitude of ¢ depends exclusively on the data o, f and is in-
dependent of ¢.

2. PROOF OF THEOREM 1
We start with an auxiliary assertion.

Lemma 1. Suppose (x, t, u, v) ¢ M(c).
Then
eyt 2 o

where lim h(c) = + oo.
c—+

Proof. Let r > ¢, |r] > |sl the other cases being treated in a similar way.
Necessarily, we have u, v = 0 and, consequently,

c<r=lo| + [ V(oux, 1, 2)dz <
(according to (1.4))

< o] + u| V(oulx, t,w) <

(in view of (1.2))

< Jo] + Ju| Vica + 00,0, u)),

which yields the desired result. Q.E.D.
We are about to prove Theorem 1. Consider a solution (4, v) of the Cauchy
problem {5}, (I) defined for ¢ € [0, t,) and satisfying (1.6).
For arbitrary 7 e [0, t,) we set
w = max { max lr(x, t, u(x, t), v{x, t))], max ls(x, 1, u(x, 1), v(x, t))l} .
R te[0,7]

te[0,7]
xeR1! xeR!

In view of continuity, the value w must be attained at some point (xy, t;), u' =
= u(xy, ty), V' = o(xy, 7).
We need only to show w < c.
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Assume the contrary, i.e. w > ¢. With (1.6) in mind, we get t, € (0, 7] and, con-
sequently, four different cases are to be distinguished, namely

(a) Hxp, t,ul, o)y =w with u' =0, o' =0,
(2:2), Fe=0, r <0, 1,20 in (x,1);
(b) Mxp, tu',v')y = —w with u' <0, v' <0,
(2.2), re=0, r 20, r,<0 in (x,t);
() s(xg, ty, ul,0t) =w with u' <0, »' >0,
(2.2). s, =0, 5,50, 5,20 in (x;,1);
(d) s(x. t,u' o) = —w with u'=20, ' <0,
(2.2), se=0, 5,20, 5,50 in (xq,1).

Carrying out the necessary computations we derive
re =0, + J(ox, t,u)u, + .,
se = v, — J(o,(x, t, w))u, — Py,

where
o 1'[“ Ol 1.2) 4o
2Jo Jofx. 1. 2)
Fee = Ve + V(0u(X, 1, u)) up + Viox, t,u)) © "
_Ou(Xhu) o
2\/(0',,()(, [ u)) : v
o Oalx by
Sex = Ve — (00X, 1, 0)) 1y — J(ox. 1, u))
_ L oulxtw) o
2 dxtw) T
with

e Y T
o .[o V(o.(x, 1, 2)) ¢ J‘ (ou(x, 1, 2))>? dz

Next, we have

Fe =10 + \/(Uu(x> t> u)) u, + ¢3 >

1( a,,,(x t, z)
s = _[ V(o/x. 1, z))d

where
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Taking advantage of the equations (S, ), (S?) we are led to the conclusion that
r, = o(x, 1, u)'r —av + ev. + f +
+ J(oux, 1. u) (ve — agqu + eu, + e¥(x, 1, u),) + D5 ;
similarly
s, =o(x,t,u), — a0 + evy + f —
— J(ox, t,u)) (v, — a,u + su,, + e¥(x,1,u),) — ;.
Suppose first that (a) holds. In view of the relations just obtained, we have

r,=B, + B, + By + B, + B

where
Bl = \//(O',,(X, f “’)) (Ux + V/(le(xa t, u)) u-r) 5
, Ol X, 1, 1)
BZ = & Uxx + \/(O'"(X, 1, u)) Uyy + — —— Uy, ],
(o (x, 1, u))
By = [+ ox,t,u),
By = &3 + e/(a(x.t,u)) P,
with

P, :Jw Taxal X, ”,E)d,v - Jm ,‘Téu(f’f;‘i)dv
= “
0 %(X, L,

o 0u(x,1,2) o, z)
Bs = —ay0 — ay J(o,(x, 1, u))u.
Seeing that r. = 0 we get the estimate
(2.3) B, + By + B, = J(ox1, 11, u")) (=P + ePy) + P53 + ) + 5.
The relation r,, < 0 brings forth
1
B2 (o et ")

The condition (1.4) together with the inequality u' = 0 implies

(2.4) B, < o(—,).

Our aim is to show r, < 0 for ¢ large enough, which contradicts (2.2),. With the
relations (2.3), (2.4) in mind, we are to cope with the term

re < os(1 + ou(xy, 4, ul)))él’dﬁil - az’l’l! — ay (o x1, 1y, u')) lull

where @; are of the form
j(‘)"” g(xy, 11, 2)dz, g(x,t,z) >0 for z— 4+
uniformly in x, t due to (1.2), (1.3).

189



We conclude that
(25) re < ¢ — ¢7 h(c)

where 1 appears in (2.1) and ¢4, ¢; > 0 depend on the functions o, f only.

Thus Lemma 1 completes the proof in the case (a).

One easily observes that the case (b) can be treated in a similar way. Note that,
since u! < 0, we have

BZ g —“E(pz

in view of (1.4).

In the conclusion, let us sketch the way how to treat the case (c). The reader will
observe that a similar technique applies to (d).

Following the line of arguments from the case (a), we can decompose

s,=D, + Dy + D3 + Dy + D;
where

Dy = J(ox,t,u)) (M(ox, t, u)) u, — v,),

s(vxx — o (x, 1, w) uyy — Joux b u)) u") ’

A
I

Dy =B;, D,=—-B,,

&
I

= —a + a; J(ox, t,u))u.

We confine ourselves to the most difficult term D,. Seeing that s,, < 0 we obtain

1
l)2 é e <1 W_o-uu(xh tl’ u 1) u,lc + ¢2> é
2 J(oxy, ty, u"))

(combining (1.4) together with u' < 0)
< ¢ed,.

Since we have u' £ 0, v' = 0, the remaining part of the proof is literally the same
as in the case (a).
Thus, Theorem 1 has been proved.
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Souhrn
CASOVE ZAVISLE INVARIANTNI OBLASTI PRO PARABOLICKE SYSTEMY,
TYKAJICI SE JEDNODIMENSIONALNI NELINEARNI ELASTICITY
EDUARD FEIREISL
Je vySetfovan parabolicky systém vznikajici pfi feSeni nelinearni telegrafni rovnice metodou

mizejici viskosity. DokaZeme existenci apriornich odhada v prostoru L nezavislych na viskosité.
Vysledku je dosaZzeno pomoci metody zobecnénych invariantnich oblasti.

Pe3ome

3ABUCAIME OT BPEMEHU MHBAPUAHTHBIE OBJIACTH
JUTSL TAPABOJIMYECKUX CUCTEM, KACAIOUUXCS OJAHOMEPHOM1
HEJIMHEVMHOM 3AJAYU VIIPYIOCTU

EDUARD FEIREISL
M3yyaeTtcsa nmapabonuyeckas cuctema, BOZHHKAIOU[AasA IIPU PSIICHHH KBa3WIMHEHHOTO Tenerpad-
HOTO YPAaBHEHHS. METOJJOM HMCKYCTBEHHO#M BS3KOCTH. JIOKa3aHO CyLeCTBOBAaHHE HE3aBHCHMBIX OT

BS3KOCTH aNPHOPHBIX OLEHOK B NMPOCTPAHCTBe L . Pe3ynbTaThl MOMyYeHb! NPU MOMOIIH METOAA
06001IEHHBIX WHBAPUAHTHBIX ObyacTeii.
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