[2] H. Amann:
Periodic solutions of semi-linear parabolic equations. Nonlinear Analysis: A collection of papers in honor of Erich Rothe, Academic Press, New York (1978), 1 - 29.
MR 0499089
[3] K. N. Chueh C. C. Conley J. A. Smoller:
Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26 (1977), 373 - 392.
DOI 10.1512/iumj.1977.26.26029 |
MR 0430536
[4] W. Craig:
A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations. Ann. Sci. Norm Sup. Pisa Ser. IV- Vol. 10 (1983), 125-167.
MR 0713113 |
Zbl 0518.35057
[7] E. Feireisl:
Time-dependent invariant regions for parabolic systems related to one-dimensional nonlinear elasticity. Apl. mat. 35 (1990), 184-191.
MR 1052739 |
Zbl 0709.73013
[9] P. Krejčí:
Hard implicit function theorem and small periodic solutions to partial differential equations. Comment. Math. Univ. Carolinae 25 (1984), 519-536.
MR 0775567
[11] A. Milani:
Global existence for quasi-linear dissipative wave equations with large data and small parameter. Math. Z. 198 (1988), 291 - 297.
MR 0939542
[12] A. Milani:
Time periodic smooth solutions of hyperbolic quasilinear equations with dissipation term and their approximation by parabolic equations. Ann. Mat. Рurа Appl. 140 (4) (1985), 331-344.
DOI 10.1007/BF01776855 |
MR 0807643
[13] T. Nishida:
Nonlinear hyperbolic equations and related topics in fluid dynamics. Publications Mathématiques D'Orsay 78.02, Univ. Paris Sud (1978).
MR 0481578 |
Zbl 0392.76065
[14] H. Petzeltová:
Applications of Moser's method to a certain type of evolution equations. Czechoslovak Math. J. 33 (1983), 427-434.
MR 0718925
[15] H. Petzeltová M. Štědrý:
Time periodic solutions of telegraph equations in n spatial variables. Časopis Pěst. Mat. 109 (1984), 60-73.
MR 0741209
[17] M. Rascle:
Un résultat de "compacité par compensation à coefficients variables". Application à l'elasticitě non linéaire. C. R. Acad. Sci. Paris 302 Sér. I 8 (1986), 311 - 314.
MR 0838582 |
Zbl 0606.35054
[18] D. Serre:
La compacité par compensation pour lour les systemes hyperboliques non linéaires de deux équations a une dimension d'espace. J. Math. Pures et Appl. 65 (1986), 423 - 468.
MR 0881690
[19] M. Slemrod:
Damped conservation laws in continuum mechanics. Nonlinear Analysis and Mechanics Vol. III, Pitman New York (1978), 135-173.
MR 0539691
[20] M. Štědrý:
Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions. (to appear).
MR 0995505
[21] L. Tartar:
Compensated compactness and applications to partial differential equations. Research Notes in Math. 39, Pitman Press (1975), 136-211.
MR 0584398
[22] O. Vejvoda, al.:
Partial differential equations: Time periodic solutions. Martinus Nijhoff Publ. (1982).
Zbl 0501.35001