[1] P. M. Anselone P.-J. Laurent:
A general method for the construction of interpolating or smoothing spline functions. Num. Math. 12 (1968) No. 1, 66-82.
DOI 10.1007/BF02170998 |
MR 0249904
[2] P. Bečička J. Hřebíček F. Šik: Numerical analysis of smoothing splines. (Czech). Proceed. 9-th Symposium on Algorithms ALGORITMY 87, JSMF, Bratislava. 1987, 22-24.
[3] K. Böhmer:
Spline-Funktionen. Teubner, Stuttgart, 1974.
MR 0613676
[4] E. O. Brigham:
The Fast Fourier Transform. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.
Zbl 0375.65052
[5] C. S. Burrus T. W. Parks: DFT/FFT and Convolution Algorithms. Wiley Interscience, 1985.
[7] D. F. Elliot K. R. Rao:
Fast transforms. Algorithms, Analyses, Applications. Acad. Press, New York, London, 1982.
MR 0696936
[10] J. Hřebíček F. Šik V. Veselý:
Digital convolution filters and smoothing splines. Proceed. 2nd ISNA (I. Marek, ed.), Prague 1987, Teubner, Leipzig, 1988, 187-193.
MR 1171704
[11] J. Hřebíček F. Šik V. Veselý: How to choose the smoothing parameter of a periodic smoothing spline. (to appear).
[12] J. Hřebíček F. Šik P. Švenda V. Veselý: Smoothing splines and digital filtration. Research Report, Czechoslovak Academy of Sciences, Institute of Physical Metallurgy, Brno, 1987.
[13] L. V. Kantorovič V. I. Krylov:
Approximate methods of higher analysis. (in Russian). 4. ed. Moskva, 1952.
MR 0106537
[16] M. Marcus H. Minc:
A survey of matrix theory and matrix inequalities. Boston 1964 (Russian translation, Nauka, Moskva, 1972).
MR 0349699
[17] H. J. Nussbaumer:
Fast Fourier Transform and Convolution Algorithms. 2nd ed., Springer, Berlin, Heidelberg, New York, 1982.
MR 0606376
[18] V. A. Vasilenko:
Spline-Functions: Theory, Algorithms, Programs. (in Russian). Nauka, Novosibirsk, 1983.
MR 0721970 |
Zbl 0529.41013
[19] J. Hřebíček F. Šik V. Veselý: Smoothing by discrete splines and digital convolution filters. (Czech). Proceed Conf. Numer. Methods in the Physical Metallurgy (J. Hřebíček, ed.) Blansko 1988, ÚFM ČSAV Brno 1988, 62-70.