[1] P. G. Ciarlet:
The finite element method for elliptic problems. North Holland, Amsterdam 1978.
MR 0520174 |
Zbl 0383.65058
[2] J. Douglas T. Dupont M. F. Wheeler:
A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations. Math. Соmр. 32 (1978), 345-362.
MR 0495012
[3] R. Glowinski J. L. Lions R. Tremolieres: Analyse numerique des inequations variationelles. Dunod, Paris 1976.
[4] J. Kačur:
Application of Rothe's method to evolution integrodifferential equations. J. reine angew. Math. 388 (1988), 73-105.
MR 0944184 |
Zbl 0638.65098
[5] J. Kačur:
Method of Rothe in evolution equations. Teubner Texte zur Mathematik 80, Leipzig 1985.
MR 0834176
[6] J. Kačur A. Ženíšek:
Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems. Apl. mat. 31 (1986), 190-223.
MR 0837733
[7] A. Kufner O. John S. Fučík:
Function spaces. Academia, Prague 1977.
MR 0482102
[8] J. T. Oden J. N. Reddy:
An introduction to the mathematical theory of finite elements. J. Wiley & sons, New York- London- Sydney 1976.
MR 0461950
[9] V. Pluschke:
Local solution of parabolic equations with strongly increasing nonlinearity by the Rothe method. (to appear in Czech. Math. J.).
MR 0962908 |
Zbl 0671.35037
[10] K. Rektorys :
The method of discretization in time and partial differential equations. D. Reidel Publ. Co., Dordrecht - Boston- London 1982.
MR 0689712 |
Zbl 0522.65059
[11] А. А. Самарский:
Теория разностных схем. Наука. Москва 1977.
Zbl 1155.81371
[12] M. Slodička:
Application of Rothe's method to evolution integrodifferential systems. CMUC 30, 1 (1989), 57-70.
MR 0995701 |
Zbl 0674.65110
[13] M. Slodička: О слабом решении одной системы квазилинейных интегродифференциальных эволюционных уравнений. ОИЯИ. Р5-87-765, Дубна 1987.
[14] G. Strong G. J. Fix:
An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, N. J. 1973.
MR 0443377
[15] V. Thomee:
Galerkin finite element methods for parabolic problems. Lecture Notes in Math. 1054, Springer-Verlag, Berlin- Heidelberg- New York- Tokyo 1984.
MR 0744045 |
Zbl 0528.65052
[16] M. F. Wheeler:
A priori $L_2$-error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723 - 759.
DOI 10.1137/0710062 |
MR 0351124
[17] M. Zlámal:
A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields. Math. of Соmр. 41 (1983), 425-440.
MR 0717694