Article
Keywords:
quadratic programming; elastic clamped plate; algorithm; energy functional; convergence; minimization problem; numerical solution; finite element method
Summary:
The problem of a thin elastic plate, deflection of which is limited below by a rigid obstacle is solved. Using Ahlin's and Ari-Adini's elements on rectangles, the convergence is established and SOR method with constraints is proposed for numerical solution.
References:
[2] Ciarlet P. G.:
Conforming and nonconforming finite element methods for solving the plate problem. Conference on the numerical solution of differential equations, University of Dundee, July 1973, 03-06.
MR 0423832
[4] Glowinski R.: Analyse numerique d'inequations variationnelles d'ordre 4. (preprint of University Paris VI).
[5] Jakovlev G. N.: The boundary properties of the functions belonging to the class $W^{1,p} on domains with conical or angular points. Trans. Moscow Math. Soc. (1967), 227--313.
[6] Janovský V., Procházka P.:
The nonconforming finite element method in the problem of clamped plate with ribs. Apl. Mat. 21 (1976), No 4, 273 - 289.
MR 0413548
[7] Glowinski R., Lions J. L., Trémolieres R.: Analyse numérique des inéquations variationnelles. Dunod, Paris 1976.