Previous |  Up |  Next

Article

Keywords:
generalized Bell’s $C^m$-elements; approximate solution; rate of convergence
Summary:
Curved triangular $C^m$-elements which can be pieced together with the generalized Bell's $C^m$-elements are constructed. They are applied to solving the Dirichlet problem of an elliptic equation of the order $2(m+1)$ in a domain with a smooth boundary by the finite element method. The effect of numerical integration is studied, sufficient conditions for the existence and uniqueness of the approximate solution are presented and the rate of convergence is estimated. The rate of convergence is the same as in the case of polygonal domains when the generalized Bell's $C^m$-elements are used.
References:
[1] Bramble J. H., Zlámal M.: Triangular elements in the finite element method. Math. Соmр. 24 (1970), 809-820. MR 0282540
[2] Ciarlet P. G., Raviart P. A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), pp. 409-474, Academic Press, New York 1972. MR 0421108 | Zbl 0262.65070
[3] Ciarlet P. G.: Numerical Analysis of the Finite Element Method. Université de Montréal, 1975. MR 0495010
[4] Holuša L., Kratochvíl J., Zlámal M., Ženíšek A.: The Finite Element Method. Technical Report. Computing Center of the Technical University of Brno, 1970. (In Czech.)
[5] Kratochvíl J., Ženíšek A., Zlámal M.: A simple algorithm for the stiffness matrix of triangular plate bending finite elements. Int. J. numer. Meth. Engng. 3 (1971), 553 - 563. DOI 10.1002/nme.1620030409
[6] Mansfield L.: Approximation of the boundary in the finite element solution of fourth order problems. SIAM J. Numer. Anal. 15 (1978), the June issue. DOI 10.1137/0715037 | MR 0471373 | Zbl 0391.65047
[7] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[8] Stroud A. H.: Approximate Calculation of Multiple Integrals. Prentice-Hall., Englewood Cliffs, N. J., 1971. MR 0327006 | Zbl 0379.65013
[9] Zlámal M.: The finite element method in domains with curved boundaries. Int. J. numer. Meth. Engng. 5 (1973), 367-373. DOI 10.1002/nme.1620050307 | MR 0395262
[10] Zlámal M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10(1973), 229-240. DOI 10.1137/0710022 | MR 0395263
[11] Zlámal M.: Curved elements in the finite element method. II. SlAM J. Numer. Anal. 1.1 (1974), 347-362. DOI 10.1137/0711031 | MR 0343660
[12] Ženíšek A.: Interpolation polynomials on the triangle. Numer. Math. 15 (1970), 283 - 296. DOI 10.1007/BF02165119 | MR 0275014
Partner of
EuDML logo