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INTRODUCTION

Let us solve the problem of a thin elastic clamped plate which is subjected to an
external loading f. Let us suppose that its deflection u is limited below by a rigid
obstacle. Mathematically it means that u is greater than or equal to a prescribed
function, describing the obstacle. This problem leads to the minimization problem
for energy functional over a certain convex set.

In [4] the dualisation of constraints and the algorithm of Uzawa is used for solving
this problem. In the present paper another way was chosen. Using the finite element
technique, the original energy functional is transformed into a quadratic function
in E,. We are led to procedures of quadratic programming. The proof of convergence
for Ahlin’s and Ari-Adini’s elements is given and the concrete algorithm for numerical
solution is proposed.

1. SETTING OF THE PROBLEM

Let Q be a bounded polygonal domain in E,, the sides of which are parallel to the
coordinate axes Ox, Oy. Let us denote the set of all continuous functions with com-
pact support in Q and derivatives of all orders continuous in Q by 2(Q). HQ)
(k = 0integer) will denote the space of functions, the generalized derivatives of which
up to the order k are elements of [*(Q) = H°(Q), i.e. square integrable in Q. By
H{(Q) (k = 0integer) we denote the completion of 2(Q) under the seminorm

1/2
(1.1) l”lk,Q = ( Y. |D°u|* dx d)’) ,

0 lel=k

where D*u = 9'*lu[ox™ 8y*, o = (a,, ), «; are non-negative integers, |o| = o, + a,
and D% = u.
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Let us set

F(v) = a(v; v) — ZJ' frdxdy,
Q

where a(u; v) = J. Y, DuD’vdxdy and fel*(Q).
Q laf=2

The problem to be solved is defined in the following manner:

find u € K such that

() F(u) = min #(v),

vek
where

A ={veHyQ):v=y ae. in Q}

and Y € C(Q)is a given function, y < 0 on Q.

Theorem 1.1. Problem (#) has precisely one solution u for ¥f € I*(Q) and this
solution is characterized through the relation

(1.2) a(u;v—u)gjf(v——u)dxdy VYoed .
Q

Proof. A is a closed convex subset of Hg(Q), F is a convex quadratic coercive')
functional on Hy(Q). The rest of the proof follows immediately from [1 — Th. 0.4,
p. 126].

2. APPROXIMATION OF (%)

Numerically, (.@) can be solved by minimizing # over ‘““‘a finite dimensional
approximations A, of the original convex set #". By u, we denote such an element
from 2, that

() #(uy) = min #(v).

veKpn
u,, will be called the Ritz approximation of u on A},
We present two possible constructions of % 7,, based on the decomposition of Q
into rectangles and on a suitable choice of finite elements.

Let {#,}, h > 0+ be a regular system of rectangulations of Q. This means
that Q is expressed in the form of a union of rectangles R; (i = 1, ..., N(h)), each

1 Le. f(v)— « if o]y, o —> -+ oc.
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two of which are either disjoint, or have one vertex or one side in common,

max diam (R,-) < h and there exists a constant « > 0 such that
i

h

—min >

h

max

Bins Bmax are the minimum and the maximum respectively of lengths of all sides
of R; € R,,.

Let A7, be the set of all vertices (nodes of #,) of rectangles in the rectangulation
R,. We suppose that the following condition is satisfied:

i Ny < Ny, if By > h,.
1 2

Construction 1

Let Q3(Ri) be the set of bicubic polynomials defined in R;, i.e.

: 'qus(Ri)¢>51(X»)’)= Z “ijxi}’j> [XsJ’]eRi‘

0=<i,j=s3
Let V, be the finite-dimensional subspace of Hg(Q) defined by
Vi ={ve C'(Q):v|g, € Q3(R) VR ey, i =1, ...,N(h);
v = dv[dn =0 on 3Q},

i.e., ¥}, contains those functions which are continuous and continuously differentiable
in Q and piecewise bicubic in each R;. Then X, is defined in the following manner:

@1 AHy={veV,:v(d}) = (4}, where Ale N, Q areinterior
nodes of %h} .

Construction 11

Let J;(R;) be the set of all functions defined in R; of the form:
qe Qs(Ri) had Q(X, y) = Z aijxiyj + ay3xy’ + 0y,x°y, [x, .V] € R;.
0<itj<3

Let

Sy ={ve C(Q):v|g, € Os(R)VR; € Ry, i =1, ..., N(h); v =0 on dQ}

and
(22) @ = (ve Sy o(dh) 2 y(dh), Ate Ny Q).
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3. CONVERGENCE OF RITZ APPROXIMATIONS

In this section we establish convergence of Ritz approximations u, to the exact
solution u of 2. We shall consider both the cases &, %, separately.

Let ', be defined by (2.1).

Theorem 3.1. For Vh > 0 there exists a unique solution u, € A, of (%,) and this
solution is characterized through the relation

(3.1) a(uy; v — u,) éj flv — u,)dxdy YvexA,.
Q

Proofis the same as in Th. 1.1.

We establish the convergence of Ritz approximations in the H(Z)(Q)—norm, i.e.
lu — “hlz,q — 0 for h - 0 + under the additional restriction on the obstacle .
In the sequel we assume that

(i) Y <0 on 0Q.

The proof of convergence is based on the following lemmas.

Lemma 3.1. It holds:

(3:2) [u — w30 < {(f;u — o)) + (f;up — ) + a(u, — u; v, — u) +
+ a(u;v — u,) + a(u; v, — u)} for Yve A, v,€ A,
where ( : ) denotes the scalar product in I*(Q).

Proof. Since a(u;u) < a(u:v) + (f;u — v)VYoe A and similarly a(uy,; u,) <
< a(uy; vy) + (f3 uy — vy) Vo, € A, we have

[u— w30 =alu — upu— w,) = a(u;u) + a(u,; u,) — au; u,) —
— a(uy; u) £ au; o) + (f;u — v) + aluy; v) + (f3up — vy) —
— a(u; uy) — a(uy; u) = a(u;v — u,) + a(u; u,) +
+ (fsu —v) + a(uy; v, — u) + a(uy; v) + (f; up — v,) —
—a(u; uy) — a(uy; u) = a(usv — w) + (fiu — v,) + (fi0, — v) +

+ a(uy, — usv, — u) + a(uiv, — u) + (fiu, —0) + (f;0— vy).
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Lemma 3.2. For Yv e X there exists v,e A", such that
[U - v,,]l,Q -0 for h—-0+.

Proof. 1° First let us assume v € A~ n H*(Q). Let v, € V}, be an element, the restric-
tion of which in R; € %, is the Hermite bicubic interpolate of v. Then v, has the re-
quired property. In fact, by definition

Upr, = Mg

and Mg,v € Q3(R;) is determined from the following conditions:

0 0
Mg, v(4;) = v(4), 5;”“' o(4;) = P u(4;),

L g oldy) = Soa) Lt o) = = o),
dy Jy 0x dy 0x Oy
where A;,j = 1, ..., 4 are the vertices of R;. From the construction of v, and the

definition of ¢, it follows that v, € ", and moreover [3]:
[v = 0,20 =0(h*) for h—0+.

2° Let ved” be arbitrary.
Let o€ HS(Q) be a function with the following properties:

|#],0=1, ®>0 in Q.
Let v, = v + ¢®,¢ > 0. Then
|ve — 02,0 = €|®|10 =2,

v,2v in Q

and the assumption (ii) results in

(3.3) v,>Y in Q for Ve>0.

The definition of Hg(Q) implies that there exist v,z € 2(Q) such that
]ve - v£H|2,Q -0 if H->0+.

The imbedding theorem of Hp(Q) into C(Q) yields
vy = v, (uniformly) in Q.

Hence v,y >  in O for H sufficiently small. As v,y € 2(Q) 0 ', part 1° of the proof
ensures the existence of v, € 4", such that

[ver — vala.p = O, h = O+ .

338



Finally,
[o = vilae = [ = 02 + [0 — Ven|2.0 + [Ven — V4|20 = 0
if ¢hyH -0+ .

Lemma 3.3. Let {1,}, v,€ A, be such that v, — v (weakly) if h — 0+ in H(Q).
Thenve A .

Proof. It is sufficient to prove v = y in Q. As &(x)e H™*(Q)") (Dirac function
concentrated at xe (), we have

vh(x) > v(x) forall xeQ.
Let us suppose that there exists x* € Q such that
(3.4) o(x*) < Y(x*).

As v,y € C(Q), (3.4) holds in a neighbourhood U(x*, £) n Q, ¢ > 0, where U(x*, &) =

= {x€ E, : g(x, x*) < &}.
Further, diam (R;) £ hVR;e #, and h — 0+, therefore there exists A}°e A,
such that A% e U(x*, ¢) » Q. The assumption (i) implies

Aloe ¥, for Yh < h, .
As v,(A') = (A%) for Vh < hy, it must be

v(Ah) = lim p,(A%) = Y(A%),
h0
which is a contradiction with the above considerations.

Theorem 3.2. Let (i), (ii) hold. Then
]u — u,,]z,Q -0 for h->0+.

Proof. Lemma 3.2 ensures the existence of v € A7, such that v — u in Hg(Q).
Further,

H(uy) £ 2(v5), A(or) > F(u) if h—>0+.

This and the coerciveness of # implies the boundedness of u,, in the H3(Q)-norm.
By virtue of boundedness there exist an element v*er)(Q) and a subsequence
{u,} € {u,} such that

Uy — v* in Hy(Q).

1y H ~2(Q) denotes the space of linear, bounded functionals on HE().
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By virtue of Lemma 3.3, v* belongs to ¢ and (3.2) yields
(35)  |u— w50 S {(fiu = vp) + (s up — v*) + a(u, — us vy — u) +
+ a(u; v* — uy) + a(u; vy — u)} >0 if W -0+ .

As the limit (3.5) does not depend on the choice of the subsequence u,,, we obtain
up, > uifh - 0+.

11

Let %, be defined by (2.2).
It is easy to see that %, ¢ H3(Q) but only %, < Hy(Q). By a,(u; v) we denote
the bilinear form defined on S, x S, through the relation ‘

2 a2 ‘)Z 2 2 2
auiv) = Y Qudn 5 Fu v OuIwNG g
Rictn ) g, \Ox* 0x? Oxdy dxdy  0y? ay?

Let us set |v],, = a,(v; v)!/? for Vo€ S,,. In order to define Ritz approximations, we
introduce the functional

Iuv) = ay(v; v) — 2j‘ fvdxdy, ves,.
Q

Analogously to (#,) we define the problem (2}) in the following manner:

find u, € U, such that
(#5)
Filu) = min 7,(v) .

veUy

Theorem 3.3. For Vh > 0 there exists a unique solution uy, € U, of (#;), charac-
terized through the relation

(3.6) aup; v — uy) ;J flv — u,)dxdy Vve,.
0

Proof. It is readily seen that lv|2,h defines a norm on S, x S,. #, is a convex
function which is coercive on S, and %, is a closed convex subset of S,. Hence the
existence and the uniqueness of the solution of (2;) follows.

Our aim is to prove that |u - u,,|2’,, — 0if h - 0+. First we prove some auxiliary
lemmas.
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Lemma 3.4. It holds:

(3.7) lu = w3, < {(fiu—0) + (fiu, — v) + ay(uy, — us v, — u) +
+ ay(u; v — uy) + ay(u; v, — u)}
Jor Nv,e Uy, ve A .

Proof. Taking into account the fact that
ay(u; v) = a(u;v) Vu,ve HYQ), he(0, 1)

and repeating the proof of Lemma 3.1, we obtain (3.7).

Lemma 3.5. For Yve A there exist {v,,}, v, € U, such that
(3.8) [v = van =0 if h>0+.

Proof. 1° First, let us assume ve A n H*Q). Choosing v, € S, as the Hermite
interpolate of v by Ari-Adini’s element over R; € #,, we obtain the assertion of our
lemma. Indeed, by definition

v, =Izv in R;eA,,
where Tz v e Q4(R;) is uniquely determined from the values of v, dv[ox, dv[dy at the
vertices of R;. Hence v, € %,. Moreover, the approximation has the following order:

[v — vy|a = O(h?) for h—0+.

2° Let v € A be arbitrary. Using the same approach as in the second part of the proof
of Lemma 3.2 we obtain (3.8).

We know that S ¢ Hé(Q). The question is, how closely can an arbitrary function
¢ € S, be approximated by members of Hﬁ(Q). The answer is given in

Lemma 3.6. For Yo € S, there exists a function r,¢ € Hy(Q) such that

0 0
(3.9) ¢ =10, a’:':) = Ly (5;%) on OR;,, R;e A,
(3.10) I(P - "h(Plz,h = Clq)]Z,h
(3.11) lo = rolloq = ch?[o]2n,

where Ly, denotes the linear Lagrange interpolate of ¢ on 0R;, 8[0v,, is the normal
derivative on 0R; and ¢ > 0 is an absolute constant.

Proof. Using the extension theorem from [5], one can construct the function
ryp over R;e %, satisfying (3.9). A detailed proof of (3.9)-(3.11) can be found

in [6].
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Lemma 3.7. It holds

(3.12) leflo.e = cl‘Plz,h for VoeS,,

where ¢ > 0 is an absolute constant.

Proof.

lelog = e = neloe + [reloo < ch?lolon + clrols.o =
= Chzl(/)|2.h -+ clrp.(P‘z,p. < Chzl(/)|2,h + cli‘h(p - (/7‘2’,, -+ Cl(Plz_,, <
§ cl(p‘Z,h E)

where (3.10), (3.11) and Friedrich’s inequality in H2(Q) have been used.
The main result of this part is

Theorem 3.4. Let (i), (ii) hold. Then

|u — u,,'z',, -0 for h->0+.
Proof. The sequence {u,} is bounded. Indeed, using (3.12) we have
(3.13) Iulvs) = +o0 if |vlan > +00, v ES,.
On the other hand, there exists a sequence {v}}, v € % such that (see Lemma 3.5)
|u - v:]” -0 for h->0+
and from the definition of u,:
(3.14) Filun) = Fuloy) = F(w) i h—0+.

From (3.13) and (3.14) the boundedness of {#,} follows. Let r,u, H}(Q) be functions
with the properties given in (3.9)—(3.11). As

(3.15) "'h“h - “hlz,h = Cl“"lz"‘ K

(3.16) [ ryuy — “h“o.q

IA

Chzluhlz,h »

the sequence {ryu,} is bounded in the H3(@)-norm. Thus there exist v* & H(Q) and
a subsequence {r,. u,-} € {ryu,} such that

(3.17) Fetty — v in H(Q).

The definition of r,u, implies that r,,uh(A';) 2 l//(A'i')’ Ale &, Hence v* be.longs
to A (the proof is the same as in Lemma 3.3). Finally, we use (3.7) and we obtain

=t £ (0= 60) 4 (o — )+l — o — )+
+ ap(u; v* — uy) + ay(us vy — u)} .
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As |oy — ul, 4 = 0 for k' — 0+, we have

(3.18) (fiu—0vp)>0, ap(u;u —vy)—>0 for h' >0+ .

Further,

(3.19) lan(un — us g — u)| < celuy — ul3 4 + £|v:‘, — ul3
&

for every ¢ > 0 and
(fs up — v*) = (f5 up — retty) + (f; rpup — v*) >0 for b - 0+

by virtue of (3.16) and (3.17). It remains to estimate the term a,(u; v* — u,.). Let

Q,(#,) = {ve I*(Q) : v|g, is a quadratic function} .
We can write

ap(u; v* — uy) = ap(u; v* — rpuy) + ap(u; rpuy — uy) =
= ap(u; v* — rypuy) + ap(u — p;ryu, — uy) +
+ ay(p; rpuy — uy) for Vpe Qu(4,).
Ari-Adini’s element satisfies the criterion of “the patch test” (cf. [2], [6]), i.c.
(3.20) ay(p; rptty — uy) =0 Vpe Qy)(2#,), h' >0.
Let p,- € Q,(#,) be a piecewise quadratic Lagrange interpolate of u on Q. Then
|u = Pwlaw >0 if R >0+ .

This and (3.15) yields

(3.21) ay(u — ppiuy — rpuy) >0 0f 0> 04 .
Finally,
(3.22) ay(u; v* — rpu,) = a(u; v* — rou,) >0 if K" -0+

by virtue of (3.17). Using (3.18)—(3.22) we obtain

(3.23) lu — up|yp =0 if h >0+ .

As the limit (3.23) does not depend on the choice of the subsequence {u, }, we obtain
lu = upyp >0 if h>0+.

To find the solution of (2,), (5/",,) respectively, we can apply various procedures
of the quadratic programming. We restrict ourselves to (2,) only.
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Let o, ..., @p - .., g be the interpolating basis of V, and let the first M functions
correspond to the value of the interpolated function, i.e.

0 a 0?
Zp(A) = "—¢{(d)=——¢p(4,)=0
2e 4D = oA = oA

ij=1,...,M,

(3.24) o (4) =9

ij»

where A, i = 1, ..., M are all the interior nodes of #,. Hence any ve ¥}, can be
written in the form

(329 09 = 30,05,

where q; = v(4;), j =1, ..., M. From the definition of ¢, and (3.24), (3.25) it
follows
vey<e>q =(q, ..., qr)e Ay,

where
Hg=1{qeEg:q; ZY(4d;), A;je /,n Q,j=1,...,M}.
Substituting (3.25) into #(v) we obtain

Z(q) = #(v) = ¢"Aq — 2f7q,

where fT = (.fu "'5fR)’ A= (aij)f,j=1’ fj ZJ fq’j dxdy, a;; = a(‘/’i§ ‘Pj)-
Q
Problem (2,) can be written in the following equivalent form:
find q* € A g such that

(2) Z(¢*) = min Z(q) .

gqeX'E

It seems that one of the most effective numerical method for solving (?;,,) is the
modification of the well-known SOR method:

let g° € A be given,

= . R \
a7t = — —(Yaygit + Y audi — 1)
a; i=1 Jj=i+1

g7t = max {y(4,), (1 — o) q7" + wgi Y, i=1, M

|

Il

=1l -0) gl + o7, i=M+1,...,R; m=12 ...,

where w € (0, 2) is some selected weighting factor. For the proof of the convergence
of this method see [7].
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Souhrn

O NUMERICKEM RESEN] JEDNE VARIACNI NEROVNOSTI
4. RADU METODOU KONECNYCH PRVKU

JAROSLAV HASLINGER

V prdci je feSen problém tenké vetknuté desky, jejiz prihyb je zespodu omezen
dokonale tuhou piekdzkou. UZitim metody konecnych prvku dochdzime k uloze
kvadratického programovani: nalézt minimum kvadratického funkciondlu na kon-
vexni podmnoziné Ay < E,. Uzivaji se dva typy konecnych prvki na obdélnicich
a to prvky bikubické a redukované Ari-Adiniovy prvky. Je dokdzdna konvergence
metody a navrZena konkrétni numerickd metoda pro feseni ulohy v koneéné dimensi.
Vyhodou tohoto pfistupu je to, Ze jen nepatrnd Uprava umoZziluje uZzit stdvajici al-
goritmy pro feSeni klasického problému desky.

Author’s address: Dr. Jaroslav Haslinger CSc., katedra matematické fyziky MFF KU, Malo-
stranské nam. 2, 118 00 Praha 1.
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