[1] T. W. Chaundy J. B. McLeod:
On a functional equation. Proc. Edin. Math. Soc. Edin. Math. Notes 43 (1960), 6-7.
MR 0151748
[3] J. Havrda F. Charvát:
Quantification Method of Classification Processes. Concept of Structural a-Entropy. Kybernetika 3 (1967), 30-35.
MR 0209067
[4] C. E. Channon:
A mathematical theory of communication. B.S.T.J. 27 (1948), 379 - 423, 623-656.
MR 0026286
[5] B. D. Sharma I. J. Taneja:
Functional Measures in Information Theory. Funkcialaj Ekvacioj 17(1974), 181-191.
MR 0379033
[6] B. D. Sharma I. J. Taneja:
Entropy of type ($\alpha$, $\beta$) and other generalized measures in information theory. Metrika 22 (1975), 205-215.
DOI 10.1007/BF01899728 |
MR 0398670
[7] B. D. Sharma I. J. Taneja:
Three Generalized-Additive Measures of Entropy. E. I. K. (Germany), vol. 13 (1977), 271-285.
MR 0530208
[8] I. J. Taneja:
A Joint Characterization of Shannon's Entropy and Entropy of Type $\beta$ through a Functional Equation. Journal of Mathematical Sciences (India) 10 (1975), 69-74.
MR 0539497
[9] I. J. Taneja:
On the Branching Property of Entropy. To appear in Annales Polonici Mathematici (Poland), Vol. XXXV, 1978.
MR 0499877
[10] I. J. Taneja: A Functional Equation of Type ($\alpha$, $\beta$) in Information Theory. Communicated.
[11] I. Vajda:
Axioms for a-Entropy of a Generalized Probability Scheme. Kybernetika 2 (1968), 105-112.
MR 0233626 |
Zbl 0193.48201