Previous |  Up |  Next

Article

Summary:
Let $\left\{X_n,-\infty < n + \infty \right\}$ be a Markov process with stationary transition probabilities having a $\sigma$-finite stationary measure and satisfying a weak recurrence condition. We investigate the structure of the forward and backward tail $\sigma$-fields, $\Cal T_{+\infty}$ and $\Cal T_{-\infty}$, under a variety of situations. The main result is a representation theorem for the sets of $\Cal T_{+\infty}$; using this we develop a self-contained comprehensive treatment, deriving new as well as known theorems, including the decomposition into cyclically moving classes of processes satisfying the condition of Harris. The point of view and the techniques are probabilistic throughout.
References:
[1] Blackwell D., Freedman D.: The tail $\sigma$-field of a Markov chain and a theorem of Orey. Ann. Math. Stat. 35, (1964), 1291-1295. DOI 10.1214/aoms/1177703284 | MR 0164375 | Zbl 0127.35204
[2] Doeblin W.: Elements d'une theorie generale des chaines simples constants de Markoff. Ann. Sci. Ecole Norm. Sup., III, Ser. 57, (1940), 61-111. MR 0004409
[3] Halmos P. R.: Measure Theory. Van Nostrand, (1950). MR 0033869 | Zbl 0040.16802
[4] Harris T. E.: The existence of stationary measures for certain Markov processes. Third Berkeley Symposium on Math. Stat. and Prob., vol. 2(1956), 113-124. MR 0084889 | Zbl 0072.35201
[5] Harris T. W., Robbins H.: Ergodic theory of Markov chains admitting an infinite invariant measure. Proc. Nat. Acad. Sci., 39, (1953), 860-864. DOI 10.1073/pnas.39.8.860 | MR 0056873
[6] Isaac R.: Limit theorems for Markov transition functions. Ann. Math. Stat. 43, (1972), 621-626. DOI 10.1214/aoms/1177692641 | MR 0300338 | Zbl 0278.60048
[7] Isaac R.: Theorems for conditional expectation, with applications to Markov processes. Israel Journal of Math., vol. 16, no. 4 (1973), 362-374. DOI 10.1007/BF02756724 | MR 0340547
[8] Isaac R.: A uniqueness theorem for stationary measures of ergodic Markov processes. Ann. Math. Stat. 35, (1964), 1781 - 1786. DOI 10.1214/aoms/1177700399 | MR 0168019 | Zbl 0127.09702
[9] Isaac R.: On regular functions for certain Markov processes. Proc. Amer. Math. Soc., 17, (1966), 1308-1313. DOI 10.1090/S0002-9939-1966-0205330-4 | MR 0205330 | Zbl 0143.40502
[10] Jain N. C: A note on invariant measures. Ann. Math. Stat., 37 (1966), 729-732. DOI 10.1214/aoms/1177699470 | MR 0196806 | Zbl 0192.25002
[11] Jamison B., Orey S.: Markov chains recurrent in the sense of Harris. Z. F. Wahrschein, 8, (1967), 41-48. MR 0215370 | Zbl 0153.19802
[12] Orey S.: Recurrent Markov chains. Pacific Journal, 9 (1959), 805-827. DOI 10.2140/pjm.1959.9.805 | MR 0125632 | Zbl 0095.32902
[13] Orey S.: Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand (1971). MR 0324774 | Zbl 0295.60054
[14] Foguel S. R.: The ergodic theory of Markov Processes. Van Nostrand Reinhold (1969). MR 0261686 | Zbl 0282.60037
[15] Rosenblatt M.: Markov Processes. Structure and asymptotic behavior. Springer-Verlag (1971). MR 0329037 | Zbl 0236.60002
Partner of
EuDML logo