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1. INTRODUCTION

Sharma and Taneja [6, 7] introduced and characterized entropy of type (s p)
given by

(L) H(py - b, B) = (2" 7% — 2“")“.21(17‘}‘ -p), a%p, >0,

for a complete probability distribution P = (p;,...,p,), p; 20, Y pi=1 by
i<1

generalizing a functional equation considered by Chaundy and McLeod [1]
The measure (1.1) satisfies a recursive relation as follows:

(12) Hn(pl’ cees Dns &, ﬂ) - Hn—I(PI + P2s P3s -+ pn; a, B) =

A, i p
=—(P1 +P2) H2<i—»—i‘ 205,1)4'
A, — Ag Pr + P2 PLt+ P2

A D>
+—-ﬂk(pl+p2)ﬂH2<_—E}_—s-'a—'—; l,ﬂ)a
Ap — A, Py + P2 p1+ D2

a#ﬂs a:*:l, B:%:l, a9ﬁ>0’
where p; +p, >0, A, =(2'""*=1) and A4, =(2'"F-1).

Measure (1.1) reduces to entropy of type § (or o) when « = 1 (or = 1) given by

(]3) Hn(ph <5 Pns 13 ﬁ) = Hn(pl’ “+os Pns B) = (21—ﬁ - 1)_1[211){‘ - 1] s

p+1, B>0.

*) The work was supported by a Post-Doctoral Fellowship awarded to the author by Council
of Scientific & Industrial Research, India.
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When B — 1, measure (1.3) reduces to Shannon’s entropy [4], viz.

(1.4) Hypis oo pa) = = L pilogs pi.

The measure (1.3) was characterized by many authors by different approaches.
Havrda and Charvdt [3] characterized (1.3) by an axiomatic approach. Vajda [11]
characterized it by mean value considerations. Daréczy [2] studied (1.3) by a func-
tional equation. A joint characterization of the measures (1.3) and (1.4) has been
done by the author in two different ways. Firstly by a generalized functional equation
having four different functions (cf. [8]) and secondly by an axiomatic approach (cf.
[9]). Functional measures of type f have also been obtained by Sharma and the
author [5].

In this communication, we characterize the measure (1.1) by taking certain axioms
parallel to those considered earlier by Havrda and Charvét [3] along with the recur-
sive relation (1.2). Some properties of this measure are also studied.

2. SET OF AXIOMS

For characterizing a measure of information of type (, §) associated with a proba-
bility distribution P = (py, ..., p,), p: 2 0, i p; = 1, we introduce the following
axioms: o

(I) H,(py, --., ps; o, B) is continuous in the region p; = 0, _ilp,- =1, a8>0;

(I1) Hy(1,0; 2, B) = 0; Hy(3, %5 0.8) =1, o, B > 0

(IH) H,(py, .., Pic15 0, Pisy, -~-’.Pu; o, ﬂ) = Hn—l(PLa cevs Piets Pitts oo Pys @, ﬁ)
forevery i =1,2,...,n;

(IV) Hn+1(P1, ceos Pie15 Vips Viys Pig1s -+v5 Pns &% ﬁ) -

— Hy(P1s o Pie1s Pis Pi1s -+ Pus 0 B) =
e P} Hy(vi,[pis viy[pis o, 1) + A P} Hy(vi,[pis vis/Pis 1, B)

Aa _ Aﬁ Ap _ Aa 3 1 2 >
a*+p0,>0 a1 B*+1,
for every v; + v, =p; >0, i =1,2,...,n, where 4, =(2'"" - 1)*) and
Ag = (2" F = 1))

When a = 1 (or f = 1), the axiom (IV) reduces to the axiom (iv) used by Havrda
and Charvdt [3] for characterizing the measure (1.3).

*) Throughout this paper we shall adopt the notation 4, for (21—« _ 1) and Apfor Q1= _ .
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Theorem 2.1. If o * B, o, B > 0, then the axioms (I)—(IV) determine a measure
given by

n
(2.1) Hy(pys o P o B) = (Ao — 4p) 7" 3 (05 — PY),
i=1
where A, and Ay are the functions of the parameters o and f respectively as defined
above.
Before proving the theorem, we prove some intermediate results based on the above

axioms:

Lemma 1. If v, 2 0,k = 1,2,...,m; Y v, = p; > 0, then
K=1

(22) Hn+m-—1(p1’ vy PDim15 U1y v vy vma Pit1s -+ pn; a, ﬁ) =

Az o
= Hn(Pl’ cevs Pns &, ﬁ) + m Di Hm(vl./pi9 L] vm/pi; o, 1) +

a B

Ap ]
+ i H(v,/pis -, vm/Pis 1, B) -
4 - Aap (vifp [pi: 1, B)

Proof. To prove the lemma, we proceed by induction. For m = 2, the desired
statement holds (cf. axiom (IV)). Let us suppose the result is true for numbers less
than or equal to m. We shall prove it for m + 1. We have

(23) Hn+m(pl,9 ey Pi—15 Vg5 eney vm+l’ Dit1s - pn’ o, B) =
= Hn+1(p1a vy PDi—15 Uy, L’ Pitt1s> - pn; a, ﬁ) +

A A
+ ——% —I*H,(v,/L,...,0p4/L;a, 1) + E_IPH, (v,/L,...,v,,/L; 1,
Ao - 4, (vaf +1] ) 4y — A, (v2] +1/L; 1, B)
‘ (where L= v, 4+ ... 4+ vy44)
Ay a
= Hn(pla <5 Pns &, ﬂ) + pi HZ(Ul/pia L/Pi§ a, 1) +
A, — A,
+ AB p’l’ H2(vl/pia L/pn 1; ﬂ) + A'I HHm(UZ/Ls LR Um+l/L; a, 1) +
Ag — 4, Ay — 4
Aﬂ
+ —L— 1P H,(v,[L, .- Vms1/L; 1, B) =
4 - A, (va] +1/Ls 1, B)
A M
= H,(p1, ..., Py 0 B) + ” “‘A {p} Hy(vs/pis Lpi; 2, 1) +
a ~ B .
+ L H,(v5]L, ..., 0ps[L; 2, 1)} +
A
+ 4 ”A {p’li HZ(vl/Pb L/pn 1’ ﬁ) + Lﬁ Hm(UZ/L’ s Um+1,/L; 1’ ﬁ)} )
g~ g

where p; = v, + L> 0.
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One more application of the induction premise yields

(2-4) Hm+1(U1/Pz, s ‘Um+1/1’i§ a, 13) = Hz(UL/Pi, L/Pi§ a@, /3) +

A
¢ (L[p;)y H,(vy/L, ..., 0y 1/L; a, 1) +
R CLOREC nifLie 1)

+

A
+ " (LIp)f Hp(03]L, ... 01 [Ls 1, B).-
Ay — A,

For B = 1, (2.4) reduces to
(2.5) Hpi1(01/Pis oo Vst [P 2, 1) =
= Hy(v:[pis LIpi; 2, 1) + (L[pi)* Hu(v2[Ls -, Omaa[Ls 0 1) -
Similarly for « = 1, (2.4) reduces to
(2.6) Hpy 1(04]Pis s O [P 1, B) =
= H,(vy/ps Lpi; 1, B) + (L]p:f’ Hu(v2]L, ..., vpse/Ls 1, B).

Expression (2.3) together with (2.5) and (2.6) gives the desired result.

Lemma 2. Ifv,; 20,j=1,2,...m;, Yv;;=p;>0,i=12,...,m, ‘ZPi =
j=1
then

(2.7) Hpptovm (D115 Uty oees Dtmy = eev  Duts Dnzs «eor Vpms & B) =

A n

=H"(p1”"’p";a’ﬂ)+ - : Z pL:Hm,'(vil/pis""Ux'm.-/pi;a’ l)+
A, — Agi=1

A” . "Z ch Hm-(”ii/piy-“’ vim-/pi; 17 ﬁ)

Ay — A, =1 ' '

Proof of this lemma directly follows from Lemma 1.

Lemma 3. If F(n;a, ) = H,(1/n, ..., 1/n; a, B), then

) A A
2.8 F(n;a, B) = ® _ F(n;o, 1) + ——2  F(n; 1, B),
@) (i) = Fsa ) & 1)
where
(2.9) F(nyo, 1) = A;7'(n' ™ = 1), a*1,

and F(n;1,B) = Az'(n" " —-1), B+1.
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Proof. Replacing in Lemma 2 m; by m and putting v;; = l/mn, i=1,2,..., n;
j =1,2,...,m, where m and n are positive integers, we have

(2.10) F(mn; o, B) = F(m; a, f) + A (1/my~" F(n; a, 1) +
A, — A,
b0 (1fmp 1 Fn; 1, p)
Ay — A, CoEe
(2.11) Flmn; 2, ) = F(n; 2. B) + AaA (1n)*=" F(m; e, 1) +

a B

+ ﬁ’—;(l/n)““ F(m; 1, ).

a

Putting m = 1 in (2.10) and using F(1; «, ) = 0 (by axiom (II)), we get

A A
F(n;a, B) = & F(n;a, 1) + b F(n;1,p),
(50 ) = e )+ 1)
which is (2.8).
Comparing the right hand sides of (2.10) and (2.11), we get
A

. a 2—1 . Aﬂ I p—1 n: —
(2.12) F(m;a, ) + YRy yy (1/my~" F(n; o, 1) + - (1/my =1 F(n; 1, B) =

a

= F(n;a, B) + 74%—” (1n)y= F(m; o, 1) + ﬁ’~;—(l/n)/’“ F(m; 1, B).

a a

Equation (2.12) together with (2.8) gives
(2.13) AA[L = (ny = T F(m; o, 1) + [(1/m)*™" — 1] F(n; o, 1)} =
= A{[1 — (1n)! "] F(m: 1, ) + [(1/m)'~" = 1] F(ns 1, B)} .
Put n = 2 in (2.13) and use F(2; «, B) = Hy(%, 4; o, B) = 1 for all o, f > 0. Then
AL = 2" F(mza, 1) = (1 = (1fm) 1)} =
= A1 = 2" F(m; 1,B) — (L = (1/m)f~ ")} = C (say),

- AS(1 =2"")F(m; o, 1) — (1 = (1/m)y~ ")} = C,

where C is an arbitrary constant.

Form =1, weget C = 0.
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Thus, we have

F(m;a, 1 —f—?77= (m' ™ —1), a#l
Similarly,
— m'#
F(m; 1, B) = 7—_2 =AM T 1), B,

which is (2.9).
Now (2.8) together with (2.9) gives

A A
2.14 F(n;a, ) = —==*—F(n; o, 1) + ——&
Q) Fap) = 2 Fad) +

L3 B B @

= (A= 4 (07" = ntH),

F(n; 1, 8) =

Proof of the theorem. We prove the theorem for rationals and then the con-

tinuity axiom (I) extends the result for reals. For this, let m and r;’s be positive
n

integers such that Y r; = m and if we put p; = r;/m, i = 1,2,..., n then an ap-
i=1

plication of Lemma 2 gives

(2.15) H,(1/m, ..., 1m, .., 1m, .. 1[m;a, f) =

ry n

Y PiH, (1r, . rga 1) +
pi=1

= Hn(pls voes Dps &, ﬂ) +

a

Ag
_ A lef Hr.(l/ LTI ]/ri; 1’ ﬁ) s

+

Hn(pl’“"pn;a’ﬂ):F(m;a’ﬁ)— =iplF(ri;a’l)"'

A—A,,

A lz Pl F(rs; 1, B).

Equation (2.15) together with (2.9) and (2.14) gives

Hpis om0 B) = (A = A) 7 B (00~ pl), @+ B, «p>0,

which is (2.1).
This completes the proof of the theorem.

414



3. PROPERTIES OF ENTROPY OF TYPE (o, §)

The measure H,(P; a, B), where P = (py, ..., p,), p; = 0, Y, p; = 1is a probability
i=1
distribution, as characterized in the preceding section, satisfies certain properties,
which are given in the following theorems:

Theorem 3.1. The measure H,(P; a, B) is non-negative for o, f > 0.

Definition. We shall use the following definition of a convex function.

A function f(-) over the points in a convex set R is convex (\ if for all r(,r, € R
and pe(0,1)

(3.1) pf(ry) + (1= ) f(ry) < flury + (1 = p)ry).

The function f is convex ) if (3.1) holds with 2 in place of <.

¥

Theorem 3.2. The measure H,(P; a, ) is convex () function of the probability
distribution P = (py, ..., p,)s pi 20, Y, p; =1, when one of the parameters o
i=1

and B (>0) is greater than unity and the other is less than or equal to unity, i.e.,
eithera > 1,0<f=<lorf>1,0<a=1.

Proof. Let there be r distributions
(3-2) PX) = {px1), .-, Pelx0)} lek(x,-) =1, k=1,2,...,r,
associated with the random variable X = (xy, ..., x,).

r

Consider r numbers (ay, ..., a,) such that @, = 0 and ) a, = 1 and define
=1

N Po(X) = {Po(x1)s - -+ Po(¥n)} »

(33) Po(x;) =kzla,‘ px)), i=12...,n.
Obviously )" po(x;) = 1 and thus Py(X) is a bonafide distribution of X.
i=1

Leta > 1,0 < B < 1, then we have

(34) kgrlak H,(Py; o, B) — H,(Po; a, B) =

kZ;lak Hn({')k; o, ﬂ) - (Aa - Aﬁ)_l {[jélajpj]“ - [jgxajpj]ﬂ} =

~

= Zl“k H,(Py; a, B) — (4, — 4p)*{ Zlajpj - Zlajp‘}} =0
i= j=

k=

for «a>1, 0<p=1,
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Yoa H (P o, B) £ H(Py; 0, B) for a«>1, 0<p=1.

=1
By symmetry in o and f, the above result is also true for f > 1,0 < o < 1.
Theorem 3.3. The measure H,(P; a, B) satisfies the following relations:
(i) (Generalized-Additive):

(35)  Hum(P*Q;a, B) = G,(P; o, B) H,(Q; 2, B) + Gu(Q; o, B) H,(P; o, ),

a, >0,
where

M=

(36) GUPya, f) = %

i

i+ p), «.p>0.

1
(ii) (Sub-Additive): For «, f > 1, the measure H,(P;a, ) is sub-additive, i.e.,
(37) o Hpy(Px Qia, B) < H(Pia, ) + Hu(Q: % B),

where P = (py,..s Pa)s @ = (q1, s 4m) and P Q = (P1q1s -, Prdmi -3 Puds - --
< vy Pulm), are complete probability distributions.

I

Proof. (i) We have

(3.8) How(P % Q5 0, B) = (4, — Ay)™" Zl J_;[(piqj)“ - (pgy)] =

i=

= (4. = 4)7 X Y [(piasf = (pia))" + pha] — piaf] =
i=1j=

(4= ) LI P+ )~ XA T 0+ ).

Similarly, we can write
(3.9) Hop(P Qo B) = (Ax = 4p) 7" [ X o6 3 (07 + p%) = X pE X (4 + 4f)]
j= i= i= i=
(i) As G(P; o, B) = 1Y (pi + p?) < 1 for a, B = 1, the relation (3.5) gives the
=1

sub-additivity (3.7).
The results of this section show that the measure is suitable for applications,

meeting at least partially the demand of the information theory for sub-additive
measures.
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Some other properties of this measure which make it a good measure of information
have been mentioned in [7, 10].
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Souhrn

AXIOMATICKA CHARAKTERIZACE ENTROPIE TYPU (o, p)
INDER JEET TANEIA

V ¢ldnku je charakterizovdna entropie typu (o, ff) s pouZitim axiomatického pfistu-
pu. Jako specidlni pfipad je zahrnuta mira typu f, kterou jiz dfive studovali mnozi
autofi. Sharma a Taneja ji vySetfovali pomoci zobecnéni jisté funkciondlni rovnice,
kterou se predtim zabyvali Chaundy a McLeod. V ¢lanku se vySetfuji nékteré vlast-
nosti této miry.
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