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1. INTRODUCTION

The purpose of this articie is the proof of a general representation theorem for the
tail o-field of a discrete parameter Markov process on general state space (Theorem 1)
and then the development of the structure of such o-fields for the most general
recurrent processes. A self-contained treatment appears here, and even where there
is some overlap with other authors (part of Theorem 2 can be obtained by combining
results in [14] and [15], and we have recently discovered the ancillary Theorem 4
in [14]) our proofs are different and our techniques and point of view remain prob-
abilistic throughout.

Theorem 5 presents another proof of the Jamison-Orey [1 1] generalization to Harris
processes of the Blackwell-Freedman [1] description of the tail o-field of persistent
Markov chains; the new proof is again based on the representation Theorem 1.

Let {X,, —00 < n < oo} be a Markov process with stationary transition probabil-
ities P"(x, E) having o-finite stationary measure 7 satisfying:

(1.1) n(E) > 0 implies P{X,e Ei.o. |X0 =x} =1ae. (n)

on state space Q.

(1.1) is weaker than the condition of Harris; it is equivalent to conservativity and
ergodicity of the process. The bilateral representation provides a one-one shift
T:X,(Tw) = X,,,(w), and a handy symmetry. The helpfulness of this symmetry
was observed in [6] where it was seen that the structure of the “infinite past”, 7 _,
(defined below) determines the limiting behavior (“‘the infinite future”) of the
functions P*(x, E).

The process {X,, —o0 < n < +oo} is called the forward process. The backward
process is the process {Y,, —o0 < n < + oo} where Y, = X _, for each n. The transi-
tion functions for the backward process will be denoted by Q7(x, E). If = is stationary
for the {X,} process, = is stationary for the {Y,} process; a similar symmetry is easy
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to prove for (1.1). Later (Theorem 4) it will be noted that the condition of Harris
is also true for both processes if it is true for one of them.
There are two tail o-fields of interest:

T e = Oo‘g'?(xm Xor1s - )

T ow=0B(. Xo1, X)) = NB(Y,, Yy, ...)
n=0 n=0

where %(...) is the o-field generated by the random variables in parenthesis.
Results will be derived for 7, ,, and may then be applied to 7 _ , by considering the
backward process {Y,}. 7 ., and 7 _,, may be quite different even if (1.1) holds,
as example 2 in Section 3 shows; but if the condition of Harris holds, 7 _, = 7
(Theorem 5).

Since m may be infinite, it will be convenient to consider a probability «, equi-
valent to 7, and use it to induce a measure on coordinate space for n = 0:

- + 00

(1.2) aMU) = J P(U | X, = x) og(dx)

where P(U | X,) is conditional probability measure determined by the transition
functions P'(x, E). Let o, be the projection of «* on x,-space, i.e., ,(S) = a*(X, € S).
If we substitute n for o in (1.2), o* becomes n*, a o-finite measure invariant under
the shift T'(see [5], [13], for example).

If © is a probability, we take oy = m = o, and a* = 7*.

Let Ce 7 . Since C may be considered measurable on the sample space of
{Xi, k 2 n} for arbitrarily large n (at least, up to equivalence with respect to the
underlying measure on bilateral space), the following representation holds for all n:

(1.3) a*(C) = J‘ P(C|X, = x)a,(dx).

Throughout this paper we frequently write ““4 = B” for two sets when these sets
may differ by a null set.

2. RESULTS

The first result is a useful representation theorem for J , -sets, and does not
require (1.1).

Theorem 1. Let Ce 7 ,,, a*(C) > 0.
(a) There is a sequence of sets {U,, n 2 0} in state space Q given by (2.2) below
such that C has the representation (up to equivalence):
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(2.1 C = {X, e U, for all but a finite number of n = 0.}

(b) 11:1:0 2, (U,) = a*(C).
() 1112 j P(C| X, = x) a,(dx) = a*(C).

Proof. By the Lévy 0—1 theorem,
P(C|Xo, Xy, ..., X,) > 1c ae. (a*) as n— o0,

where 1.is the indicator of C. By the Markov property and the fact that Ce€ I , 4,
it follows that P(C | X,) > 1¢ a.e. For each n = 0, define

(2.2) U,={x:P(C|X,=x)>4}.

Almost all points w in C satisfy w € lim inf {X, € U,}, and conversely, by the above,

proving (a). Now let
V,={X,eU, forall k=n},

so that {V,} is increasing with limit C. Thus, N can be chosen so large that
a¥(C) £ a¥(V,) + e < a¥(X,eU,) +e=0a(U,)+&, nZN,

and so for any subsequence m

(2.3) lim inf «,(U,,) = «*(C) .

m— oo

If C’ is the complement of C, we may suppose a*(C’) > 0; otherwise (b) is immediate.
Let W, be the sets obtained in (2.2) for C’ in place of C. The sets W, and U, are
disjoint for each n and the analog of (2.3) holds. Then

1 2 liminf «,(U,, U W,) 2 lim inf a,(U,,) + lim inf o,,( W,,) =

2 a*(C) + a¥(C) =1,
proving
lim inf o, (U,,) = a*(C) .

m— o

Since the subsequence {m} is arbitrary, (b) follows. Finally, letting {¥,} be the se-
quence of sets defined above, we obtain

lim inff P(C | X, = x)a,(dx) 2 lim ian‘
U,

P(C | X,(w)) a*(dw) 2

> lim inf{ LP(C | X (@) 0*(dw) — o*(C — V,,)} =
= Lliminf P(C | X,) a*(dw) = «*(C) .
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On the other hand,
lim supf P(C| X, = x) a,(dx) < lim sup o,(U,) = «*(C)
Un
by (b), and so (c) follows.

Corollary 1. The sets {U,} of (2.1) are unique. If C, and C, are disjoint T , , sets,
and if U, i = 1,2, are the corresponding sets obtained in (2.1), then for each

n

n, UP AUP = 0.

Proof: Immediate from (2.2).

Definition. The relation (2.1) is called a representation of Ce 7, ,,and the sets
{U,} are called representation sets for C.

From now on (1.1) will be assumed. The next theorem shows how Theorem 1 is
strengthened when 9, is known to be atomic.

Theorem 2. Let 7 , ,, be atomic. Then
(2.4) T 4+« is X, measurable for any fixed integer n.
(2.5) There is a partition of Q into cyclically moving classes: there is an integer
r—1
r 2 1 and disjoint sets Cy, Cy, ..., C,_{ with U C; and Q differing by a n-null set
i=0
isr—1.

r — 1 with

F. Each atom of T ., is equivalent to one of the sets [Xo,e C;], 0
Defining C, for an arbitrary integer n as the unique set C;, 0 < i
n = i(mod r), we have

IA 1A

I, xeC,
P(X7Cn+1)={0 X¢C .

The decomposition into sets {C,-} is unique in the sense that any other such decompo-
sition consists of sets equivalent to the sets {C}.
(2.6) «,(C,) is constant for each n Z 0, where C, is defined as above.

Proof. Let C be an atom of I, ,,, «*(C) > 0. For any integer n, T"C is an atom
of 7, ,, so by (1.1) there is a smallest positive integer r with «*(T"C n C) > 0, and
then T'C n C = C = T'C. Stationarity of transition probabilities yields for any
integer s,

(2.7 U ={x:PC|x,=x)> 1} ={x: P(T'C| X, = x) > 4} =
= {x: P(C| Xy4p = x) > }} = Uy,

and so the representation sets are periodic: U,, = U, if m = n (mod r). It follows that
C is measurable with respect to the random variables {X,, k < n} for any fixed
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integer n, since knowledge of P(C | X,(w)) for k < n is sufficient, by (2.7) and (2.1),

to determine whether w € C. Thus C is 7 _,, measurable. Then the Markov property

shows
le = E(lc]| ... X,-1, X,) = E(Ic| X,)

and (2.4) has been proved. Now we resort to an idea used in [6] and [7]. Let 4, =
=B(...X_y-1,X_,)forn 2 0, f = iy, the indicator of X, € 4, any set of finite
measure, and put E(f| 4,) = f,. The invariance of T and the Markov property
easily show (see [6] and [7])

(2:8) T"f, = T"E(f| 4,) = E(lp,enr | - - X -1, Xo) = E(T"f | X,) =
= P"(X,, A).

Since C is X, measurable, there is a set 4 = Q with f = Ijy,.q = l¢, and (2.8)
and the J _ , measurability of C imply by (2.8)

(2.9) lixyeny = T'f = T"E(f| 4,) = T, = P"(X,, 4).

(2.9) immediately proves the basic fact

(2.10) P'(X,, A) assumes only the values 0 or 1 a.e. (a*).

Now let C, = A and define C_, by
C_,=[xP(x,Co)=1], n

(\%

From (2.10) it readily follows that

c_, = [Xi P(—\’, C—n+1) = 1] » o nzl
and that

(2.11) C=[X,eCo]=[X_,eC_].

Since C = T™"C = [X_,,,€ C_,], it is clear that the sets {C_,, n = 0} are periodic
with period r and are precisely the r distinct representation sets. By (1.1), iterates
of C generate all the atoms of 7, ; thus each atom can be expressed in terms of a set
C_,,nz=0:

T"C=[X,eCo] =[XoeC_,].

Relabel the sets so that the r distinct sets are indexed by the integers modulo r with
P(x, C,4+,) = 1 or 0 depending upon whether x is or is not an element of C, The
uniqueness assertion is clear, and (2.5) has been shown. (2.6) is immediate from
the relation

x,(C,) = J P(x, C,) 0,—y(dx) = o,_4(C,_) .
Cu-1
This completes the proof of Theorem 2.
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It Ce T4, is {X,, n £ N} measurable for some fixed N, it turns out that C has
a pleasant representation even in the case where  , , is not atomic. The following
theorem describes this situation in part (a), and more generally gives a rather com-
plete description of 7, .

Theorem 3. Either J . is atomic or I . . is non-atomic. In the atomic case
Theorem 2 gives a complete description of the structure of I .. If T, is non-
atomic, the sets in I , ,, can be of two types: (a) sets C which are X, measurable
for any fixed integer n. If {U,} are the representation sets for C, the following
statements are satisfied for all n = 0:

1, xeU,.
LCTANES

C=[X,eU,].

a,(U,) is constant and has common value a*(C).
(b) sets C which are not measurable on the sample space of {X,, n < N} for any
finite integer N.

If at least one of 7 _, or I ., is non-atomic, then the forward and backward
processes are singular in the sense that for almost all (n) x there exist n-null sets
N, M™ for each integer n = 1, with

P(x,N?) =1
0"(x, MP) =1

for the forward and backward n-step transition functions.

If 7 _, and T ., are both atomic, then 7 _, = T ., = T .

Proof. If there is one atom C, a*(C) > 0, (1.1) assures the existence of an integer r
r—1
such that |J T™"C is equivalent to the whole space, where each set T~"C is clearly
n=0
seen to be an atom. In this case, then, there is no non-atomic part, so that.J , , is
atomic. Otherwise, there is no atom, and . , ., is non-atomic. In the non-atomic
case suppose C € .J . is measurable with respect to {X,,, n £ N} for some fixed
integer N. The Markov property used in the first part of the proof of Theorem 2 may
be applied here to prove C X,-measurable for n = N. Moreover, it involves no loss
of generality to suppose N = 0. If (2.8) is considered for the backward process (by
substituting —n for n and putting 4_, = #(X,, X,+,, ...), n 2 0), the analog
of (2.9) implies the analog of (2.10), namely, that Q%(X,, 4) = 1 or 0 a.e. for all
n =z 1, where 1x 4 = 1¢. This follows from the X,-measurability of C for n = 0.
The sets U,, analogs of the sets C_,, can be defined, and then it is not hard to obtain
all the statements of part (a), using the relation o, (U,) = 04 (Upsy) =
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= Ju,., Q(x, U,) #s4(dx) = [y, P(x, U,y q) a,(dx). We note that the periodicity
of the representation sets now fails in general because the atomic property no longer
holds. The only alternative to (a) in the non-atomic case is given by (b)

If at least one of  _, or 7, is non-atomic, it will follow from Theorems 4 and
5 that (1.1"), the condition of Harris, fails both for the forward and for the backward
process. The singularity of the processes is then obtained from [10].

If 7, say, is atomic, (2.4) shows 7, , measurable on {X,, n < N} for all fixed
N £0, so that ., is J _, measurable: I ,, < 7 _ . If 7_, is also atomic,
then 7 _, <9 ,,and so I =9 _, =T 4o

This completes the proof of all the assertions of Theorem 3.

Now we introduce the condition of T. E. Harris, a strengthening of (1.1):
(1.17) n(E) > 0 implies P{X,eEio.|X,=x} =1 forall xeQ.

We shall prove that (1.1') implies the atomicity of 7 _,, and 7 . so that one can
speak of a single tail o-field 7 by Theorem 3, and 7 satisfies the assertions of Theorem
2. Thus we will show the preceding theorems contain the results of [1] and [11].

It is known that under (1.1’) there is an integer r = 1,a 6 > 0, and a set V < Q,
0 < n(V) < oo, such that the density p"(x, y) of P"(x, E) with respect to = satisfies

(2.12) inf pi(x,y) =6
(x,y)eV xV
(see [13], p. 7).

We want to see that the symmetry of the forward and backward processes per-
sists even under (1.1').

Theorem 4. If the forward process satisfies (1.1'), so does the backward process,
except perhaps for a fixed null set of x.

Proof. The backward process satisfies (1.1); if it does not satisfy (1.1) a.e., then
for almost all (w) x, the n-step backward transition function has its support on
a m-null set, for each n (see [10]). Therefore, to show (1.1'), it will be sufficient
to prove the existence of a positive integer r satisfying

(.13) LG

on an x-set of positive (n) measure, where (2.13) is the Radon-Nikodym derivative
of Q'(x, ) with respect to n. Let r be the positive integer and V the set of (2.12)
for the forward process transition function. Let A < V, B < V. Then

P(X_,e A, X,€B) =J 0'(x, A) n(dx) + J p(M, n A) n(dx) =
- j P'(x, B) n(dx) + J' 1N, AB)n(dx) = 6 n(B) n(A).

403



Here p (), A,(*) are measures singular with respect to @ and having supports on
n-null sets M, and N, respectively. From the above, it follows thaton V x V

dP(X_,e -, Xoe") _dQ'(x, *) _ 5
dn x d=n dn =

This proves (2.13) and completes the proof of Theorem 4.

Before proceeding to Theorem 5, we make an observation: let Ce J . have
a*(C) > 0. Theorem 1 gave a representation of C by (2.1) where the sets U, are defined
in (2.2). The number % there could have been replaced with any fixed number a 2 %,
and all the results of Theorem 1 and its corollary would follow. (If 0 < a < % is
chosen, the representation so obtained is valid, but representation sets for disjoint
tail sets are not necessarily disjoint for each n.) Thus we define for each ¢ < 4,

(2.14) Up={xP(C|X,=x)>1—¢}.

Theorem 5. (1.1') implies 7, , and T _, are atomic. Therefore, 7 , , =T _, =
= J by Theorem 3, and the results of Theorem 2 hold. In particular there is a de-
composition of I into cyclically moving classes.

Proof. We shall show  , atomic; then by considering the backward process
and Theorem 4, it will follow that J _ is also atomic. First the case of finite n
will be considered; in fact, suppose n(Q) = 1. Let r, é and V be any items specified
in (2.12). 7, , will be shown atomic by proving that there do not exist more than r
disjoint 7, ,, sets. To this end, suppose {C;, 1 < i < r + 1} is a partition of the
entire space into disjoint 7 , , sets, each with positive a* measure. Choose ¢ subject
to the following restrictions:

2.15 e <&
(2.15) ic
1/4
(2.16) e ()
(1 —¢"*)é 20
1/4
(2.17) e V)
s 2

r+1

Y. n(;Uy) » 1 as n — oo since n(R) = 1, by (b) of Theorem 1 (note: «, = =, here),
i=1
hence n(F;) — 0 as n — oo. This implies:
r+1
(2.18) there is an integer N such thatif n = N, ¥V n U ;U is not empty.
i=1
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We will now prove that for any set C; there is an integer (i) = N, with
(2.19) (Uliysir 0 V) 2 .97(V), where B =¢'/?

for all positive integers k. It will be sufficient to do this for C,. Observe first that if
0 < a < b £ 1, then for each fixed i and n, ;U% < ;UL Let I > 0 be any integer
with x € U} n V; ; an infinite number of such exist by (1.1). Then x € ,UY, and so
P(C,|X,=x)>1— B.Fixi=#1,and put W= Uf,, n V. Then

[)’gP(C,.lX,=x)gJ P(dy | X, = x) P(C;| X4, = y) > S n(W) (1 — B)

by (2.12), so that
B

(W) < —H—.
- p)o

Then (2.16) implies

rp (V)
2.20 (U UL) V) < —— 22,
(2.20) ((H:l ) ) (- B)(S 20

Let C; be the complement of C;, x€ U n Vand put M = F_ V. Then we

obtain

e = P(C; |X,=x)§J‘ P'(dy | x; = x) P(C} | Xiy, = p) > 6 2(M) B,
M

implying
(221) (M) < g < ”_;(‘3’-)
by (2.17). (2.20) and (2.21) yield
N m — ELV—) = 9n
(2.22) (Ul nV)zn(V)—2. o In(V).

It has therefore been shown that for any [ = 0 with ,U; n V not empty, (2.22)
holds. To complete the proof by induction, we show that if / > N (N being the
integer described in (2.18)), and if

(2.23) (Ul 0 V) 2 9n(V)

for some k = 0, then ,Uj,,, n Vis not empty, so that the argument leading to (2.22)
proves (2.23) holds for k + 1 substituted for k. To see this, we use (2.18). If U}, N
N Vis empty, there must exist i = 1 with x € ;Uj., N V. Then repeat the argument

leading to (2.22) on C; instead of C, to show, where we write n = ¢'/* = p!/?

(2:29) (Ulsgsyr O V) 2 1(Uls ey 0 V) 2 97(V) .
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On the other hand, the restrictions on ¢ are such that since there exists x € ;Uf,,, 0 V
by (2.23), again the argument leading to (2.22) may be repeated with f§ substituted
for ¢ to show

(2.25) (Ul s ye 0 V) 2 97(V) .

n < % by (2.15) so the sets in (2.24) and (2.25) are representation sets and are disjoint
for fixed n. Thus (2.24) and (2.25) are contradictory. This proves U}, N V non-
empty and the assertion (2.19) follows by induction on k, because by (1.1) there is
certainly I = N with ;Uj n ¥V not empty. But (2.19) is incompatible with the existence
of more than r values of i because the representation sets in (2.19) are disjoint. This
contradicts the supposed partition into r + 1 sets and proves J , , atomic when
n(Q) < oo.

To extend to the case of infinite # we make use of the “process on 4’ approach
of Harris (see [4], [13]). Let 4 > V be a set of finite = measure. Let 4* = [w:
Xo(w)e A]. For almost all (n*) w e A*, the random variable T,(w), the n™ value
of X(w), Xp(w), ... lying in A, is defined, by (1.1). Put Y (0) = X1, (@), n = 1;
Yo(w) = Xo(w), {Y,} is a Markov process with stationary transition probabilities
Pi(x, E), E = A, and with stationary probability measure 7, = n(+)/n(4) (see [4]).
Let CeJ ,; as we have observed at the begining of the proof of Theorem 1, if
we A*

P(CI Y, (w)) = P(C I Xr,w(®) = 1g(w) ae. (n*) on A*

by the Lévy 0—1 theorem and the Markov property, since T,(w) — o a.e. by (1.1).
This is equivalent to stating: P(C n A* I Y,) = 1c .40 ae. with respect to “process
on A” measure induced by m, and Pj(x, E) so that C n A* is measurable with
respect to 7%, the forward tail o-field for the Y, process. Since we suppose 4 > V

the {Y,} process satisfies (1.1") and has transition probabilities satisfying [4]
W(x, E) = P(x,E), Ec A,
so that on V x V the respective densities satisfy

Pu(x,y)Zp(xy) 20

implying that .7 %  has no more than r disjoint atoms by the proof for the finite
case. If 7, is non-atomic, there are r + 1 disjoint 7, sets C;, C,, ..., C,4,
of positive measure, and then, as noted above, C; n 4* C, n A*, ..., C,, N A*
are J % . sets. Since A* may be considered so large that *(C; N A*) > 0 for each i,
this contradicts 7% having at most r disjoint atoms. Therefore 7, , is atomic.

Now apply Theorem 2 to obtain a cyclic decomposition of 7 . (2.5) and (2.12)
make it clear that each atom C; satisfies: there is an integer ¢ = #(i) with V = ,U,
for n = t(mod r), where {;U,} gives a representation of C;. From this it follows that
there are exactly r’ disjoint atoms of 7 , if ' is the smallest value of r given in (2.12).
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Using Theorem 4,.7 _ , may be handled in the same way, andso J , , = 7 _, =
= 7, by Theorem 3, and the proof of Theorem 5 is complete.

3. EXAMPLES

We conclude by giving two examples for which (1.1) but not (1.1°) hold. These
examples are due to Jamison and Orey.

Example 1. State space Q is the unit circle. To define P(x, E), rotate by an irra-
tional multiple ¢ of the number 7. Set P(x,{y}) = 1 if y = exp i(c + 0) where
x = exp i0, and P(x, {y}) = 0 otherwise. The orbit of each x is dense in Q, (1.1)
is satisfied for Lebesgue measure which is stationary for the process. (1.1') is not
satisfied, for the orbit of each point x is countable. The process is deterministic:
for all sets E, P(x, E) = lor0,and 7 , is equivalent to the class of all X,-measur-
able sets. We are in the situation where all sets are described by Theorem 3(a). In
this example J _, = 7 ;.

Example 2. Let Z, be a sequence of independent, identically distribution random
variables with common distribution P(Z, = 0) = P(Z, = 1) = 4, and let —0 <
< n < + 0. Define the point X, on Q = [0, 1] by the binary expansion

X, =22y Zn_s - ..

X, is a Markov process on Q and the Borel sets, Lebesgue measure is stationary, and
(1.1) is satisfied, but not (1.1"). 7 _, is trivial, for it is measurable with respect to the
tail o-field of the independent {Z,, n < 0}. On the other hand, 7 , , consists of all
measurable subsets of bilateral space, since every point in bilateral Z-space may be
expressed in terms of the X,’s for n = N, N arbitrarily large and fixed. Hence 7 _ =+
T 4, In fact, they are as “far apart” as possible.
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Souhrn

ZBYTKOVE ¢-ALGEBRY REKURENTNICH MARKOVOVYCH
PROCESU

RICHARD IsAAC

Necht {X,, —o < n o} je Markoviv proces s homogennimi pravd&podob-
nostmi piechodu, majici o-koneénou stacionarni miru a spliiujici podminku slabé
rekurentnosti. V ¢lanku se studuje struktura zbytkovych o-algeber budoucnosti a
minulosti  , a J _, v ruznych situacich. Hlavnim vysledkem je véta o repre-
sentaci mnozin v  , ,; na jejim zdkladé je pak provedeno systematické vySetfovani
a odvozeny nékteré nové i nékteré znamé véty vcetné rozkladu na cyklické tfidy
pro procesy vyhovujici Harrisové podmince. Zakladni pojeti i metody jsou vsSude
pravdépodobnostni.
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