[1] J. P. Aubin H. G. Burchard:
Some aspects of the method of the hypercircle applied to elliptic variational problems. Num. sol. PDE-II, SYNSPADE (1970), 1-67.
MR 0285136
[2] I. Hlaváček: Some equilibrium and mixed models in the finite element method. Proceedings of the St. Banach Internat. Math. Center, Warsaw, (1976).
[3] J. Haslinger I. Hlaváček:
Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43 - 65.
MR 0398126
[4] G. Fichera: Boundary value problems of elasticity with unilateral constraints. Encyclopedia of Physics, ed. S. Flügge, Vol. VIa/2, Springer, Berlin 1972.
[5] J. Céa:
Optimisation, théorie et algorithmes. Dunod, Paris 1971.
MR 0298892
[6] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.
MR 0227584
[8] J. H. Bramble M. Zlámal:
Triangular elements in the finite element method. Math. Соmр. 24 (1970), 809-820.
MR 0282540
[9] G. Zoutendijk:
Methods of feasible directions. Elsevier, Amsterdam 1960.
Zbl 0097.35408
[10] I. Hlaváček: Dual finite element analysis for elliptic problems with obstacles on the boundary. Apl. mat. 22 (to appear).