Previous |  Up |  Next

Article

Keywords:
dual approach; bilateral boundary value problems; elliptic equations; Signorini’s type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates
References:
[1] J. P. Aubin H. G. Burchard: Some aspects of the method of the hypercircle applied to elliptic variational problems. Num. sol. PDE-II, SYNSPADE (1970), 1-67. MR 0285136
[2] I. Hlaváček: Some equilibrium and mixed models in the finite element method. Proceedings of the St. Banach Internat. Math. Center, Warsaw, (1976).
[3] J. Haslinger I. Hlaváček: Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43 - 65. MR 0398126
[4] G. Fichera: Boundary value problems of elasticity with unilateral constraints. Encyclopedia of Physics, ed. S. Flügge, Vol. VIa/2, Springer, Berlin 1972.
[5] J. Céa: Optimisation, théorie et algorithmes. Dunod, Paris 1971. MR 0298892
[6] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. MR 0227584
[7] U. Mosco G. Strang: One-sided approximations and variational inequalities. Bull. Am. Math. Soc. 80 (1974), 308-312. DOI 10.1090/S0002-9904-1974-13477-4 | MR 0331818
[8] J. H. Bramble M. Zlámal: Triangular elements in the finite element method. Math. Соmр. 24 (1970), 809-820. MR 0282540
[9] G. Zoutendijk: Methods of feasible directions. Elsevier, Amsterdam 1960. Zbl 0097.35408
[10] I. Hlaváček: Dual finite element analysis for elliptic problems with obstacles on the boundary. Apl. mat. 22 (to appear).
Partner of
EuDML logo