Previous |  Up |  Next

Article

Keywords:
equation of neutron transport; fredholm theory; integro-partial differential equations; spectral theory; existence of nonnegative eigenfunctions
References:
[1] M. Borysewicz J. Mika: Time behavior of thermal neutrons in moderator media. CNEN Documents CEC (68), 1 Bologna (1968).
[2] K. M. Case: Elementary solutions of the transport equation and their applications. Ann. Phys. 9 (1960), 1-23. DOI 10.1016/0003-4916(60)90060-9 | MR 0109471 | Zbl 0087.42301
[3] C. Cercignani: Unsteady solutions of the kinetic models with velocity-dependent collision frequency. Ann. Phys. 40 (1966), 454 - 468. DOI 10.1016/0003-4916(66)90145-X | MR 0219288
[4] B. Davison: Milne problem in a multiplying medium with a linearly anisotropic scattering. Canadian Report CRT 358 (1946).
[5] B. Davison: Neutron Transport Theory. Oxford University Press, London 1957. MR 0095716 | Zbl 0077.22505
[6] J. J. Duderstadt: Theory of the propagation of the plane-wave disturbances in a distribution of thermal neutrons. J. Math. Phys. 10 (1969), 266-276. DOI 10.1063/1.1664842 | MR 0237159
[7] N. Dunford J. T. Schwartz: Linear operators. Part I. Interscience Publ. New York 1957.
[8] L. C. Gokhberg M. G. Krein: The basic propositions on defect numbers, root numbers and indices of linear operators. Usp. mat. nauk XII (1957), 43-118 (Russian).
[9] H. Grad: Asymptotic theory of the Boltzmann equation. I. Proceedings of the Third Intern. Symp. Rarefied Gas Dynamics, Vol. I, Academic Press, New York -London, 1963, pp. 26-59. MR 0156656 | Zbl 0115.45006
[10] E. Hecke: Über die Integralgleichung der kinetischen Gastheorie. Math. Zeitschrift 12 (1922), 277-286.
[11] S. Kaplan: Properties of the relaxation lengths in $P_L$, double $P_L$ and angle-space synthetic approximations. Bull. Sci. Eng. 28 (1967), 456.
[12] T. Kato: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-Heidelberg- New York 1966. MR 0203473 | Zbl 0148.12601
[13] M. G. Krein M. A. Rutman: Linear operators leawing invariant a cone in a Banach space. Usp. mat. Nauk III (1948), N 1, 3 - 95 (Russian), English translation in the Translations of the AMS, Vol. 26 (1952). MR 0027128
[14] I. Kuščer N. Corngold: Discrete relaxation times in neutron thermalization. Phys. Rev. 139 (1965), A981-990; 140 (1965), A85. DOI 10.1103/PhysRev.139.A981
[15] I. Kuščer I. Vidav: On the spectrum of relaxation lengths of neutron distributions in a moderator. J. Math. Anal. Appl. 25 (1969), 80-92. DOI 10.1016/0022-247X(69)90214-5
[16] I. Marek: Frobenius theory of positive operators. Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 607-628. DOI 10.1137/0119060 | MR 0415405 | Zbl 0219.47022
[17] I. Marek: On Fredholm points of compactly perturbed bounded linear operators. Acta Univ. Carol. - Mathematica et Physica Vol. 17, (1976) No. 1, 65 - 72. MR 0423106
[18] I. Marek: On some spectral properties of Radon-Nikolskii operators and their generalizations. Comment. Math. Univ. Carol. 3, 1 (1962), 20-30. MR 0144216
[19] J. Mika: Neutron transport with anisotropic scattering. Nucl. Sd. Eng. 11 (1961), 415 - 427. DOI 10.13182/NSE61-1
[20] B. Montagnini M. L. Demuru: Complete continuity of the free gas scattering operator in neutron thermalization theory. J. Math. Anal. Appl. 12 (1965), 49-57. DOI 10.1016/0022-247X(65)90052-1 | MR 0186322
[21] W. Rudin: Functional Analysis. McGraw-Hill Co. New York, 1973. MR 0365062 | Zbl 0253.46001
[22] I. Sawashima: On spectral properties of some positive operators. Natur. Sci. Rep. Ochanomizu Univ. 15 (1969), 55-66. MR 0187096
[23] V. F. Turchin: Thermal Neutrons. Gosatomizdat, Moscow 1963 (Russian).
[24] L. Van Hove: Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95 (1954), 249. DOI 10.1103/PhysRev.95.249 | MR 0063964 | Zbl 0056.44205
[25] A. M. Weinberg E. P. Wigner: The Physical Theory of Neutron Chain Reactors. Chicago University Press, Chicago 1958. MR 0113336
[26] M. M. R. Williams: The Slowing Down and Thermalization of Neutrons. North-Holland Publ. Company, Amsterdam 1966.
[27] R. Zelazny: Exact solution of a critical problem for a slab. J. Math. Phys. 2 (1961), 538-542. DOI 10.1063/1.1703738 | MR 0129922 | Zbl 0102.43102
Partner of
EuDML logo