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DUAL FINITE ELEMENT ANALYSIS
FOR UNILATERAL BOUNDARY VALUE PROBLEMS

IvAN HLAVACEK
(Received February 25, 1976)

INTRODUCTION

In the analysis of the classical-bilateral-boundary value problems the dual varia-
tional approach can be used, yielding (i) approximate values of the solution and
of its cogradient, (ii) a posteriori error bounds and two-sided estimates of the ecnergy
(cf. [1], [2], [3] and the literature therein).

It is the aim of the present paper to extend the dual approach to scalar second
order elliptic equations with unilateral boundary conditions of the Signorini’s type
(cf. e.g. [4]). We consider coercive cases only to avoid the use of normalizing subspa-
ces.

The variational formulations in terms of the scalar variable and of the correspond-
ing cogradient vector variable, respectively (minimum of potential and of comple-
mentary energy) are established and justified on the basis of the duality theory and
the saddle point theorem (cf. [5]).

Restricting the admissible functions to finite elements with piecewise linear poly-
nomials on triangulations of the given domain, we are led to minimization problems
over finite-dimensional convex sets. Some procedures of the quadratic programming
are proposed for the numerical solution of these problems. Making use of one-sided
approximations (cf. [7]) on the boundary by piecewise linear spline functions, we
prove asymptotic orders of convergence, provided the solution is sufficiently smooth.

Finally, a posteriori error estimates and two-sided estimates of the energy are
given.

1. THE SIGNORINI PROBLEM AND THE DUAL VARIATIONAL
FORMULATIONS FOR SECOND ORDER ELLIPTIC EQUATIONS

With regard to the dual analysis we shall distinguish two classes of elliptic equa-
tions, namely (i) those with a strictly positive “absolute” term and (ii) those without
an absolute term.
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For the class (i) we choose the following simple madel problem')

Problem 2;:

(1.1) —Au+u=f on QcR",
(12) wz0, P20 u™ =0 on a0=r,
v av

where Ju/Cv denotes the normal derivative with respect to the outward normal v.
In the class (i) we restrict ourselves to coercive cases and therefore consider the
following model problem.

Problem #£,:

(1.3) —Au = f on Q< R",
(1.4) u=0on I',cTI,
(1.5) u=0, Jufov=0, uduldov=0 on I,=I=1T,,

where I', and I', are nonempty sets which contain subsets open in I'.

Let Q be a bounded domain with Lipschitz boundary (see [6] for the definition
of such domain). We shall use the Sobolev spaces H¥(Q) of functions, the derivatives
of which up to the order k exist (in the sense of distributions) and are square-inte-
grable in Q. The usual norm of u in H(Q) will be denoted by [lu,, H(Q) = L,(2),

(. 9)o =j fg dx.

Let the right hand sides of (1.1), (1.3) f € L,(Q).

It is well-known that the Problem 2, can be recast as follows. Introduce the convex
set

Ky ={v|veH'(Q), =0},
where yv denotes the trace of v on the boundary I', and the functional (potential

encrgy)

Z4(0) = oli = (12 0o

1) All the results could be easily extended to equations

2 ( a;;(x) au) +ag(X)u =1,

where a;j, ag are bounded measurable functions, if the matrix [aij(x)] is symmetric, uniformly
positive definite on 2 and ao(x) > ¢ > 0 for the class (i) or ao(x) = 0 for the class (ii).
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Then the problem to find u € K such that
(1.6) L(u) < Ly(v)VoeK,

represents a variational formulation of the Problem 2.

For the Problem #, we intrcduce the convex set

K, = {vl ve H'(Q), yu’,-“ =0, yv

2 0]
and the functional (potential encrgy)

yz(”) = %IUH - (/~ ’7)0 ,

where
!l;llz :J‘ [grad v!l dx .
Q
Then the problem to find u € K, such that
(1.7) Lyu) £ Ly(v)VoekK,

is a variational formulation of the Problem £,.
The minimization problems (1.6) and (1.7) will be called primary.
Both the primary problems can be reformulated in terms of the gradient-vector
(cf. [1], [2], [3])- To this end, let us introduce the set
(1.8) Q = {A]| 2 [Ly(Q)]", div 2 e Ly(Q)}
where the differential operator

divi =Y 04,/ox;

i=1

is defined in the distribution sense only:
(1.9) j A.grad o dx = —J @ dividxVee CH(Q).
Q o
For 2 € Q, the functional 2.ve H™'/*(I') can be defined by means of the relation

(1.10) v, o) :f (4.grad v + vdiv ) dx Ve H'(Q).")
0

') Note that any function we H1/2(I") can be identified with a trace yv of a function ve H'(Q),
the mapping H”Z(l")—> HI(Q) being linear and continuous (cf. [6]).
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We write s = 0 for an se H™ ') if

(s, y0) 20 VeeK, .
Next introduce the set

Uy = {4

AL 4 =[#, 2si] V€0,
Anvy = f+divd, X v 2 0}

and the functional (complementary energy)

n+1
i) =15 1l
The problem to find A° € %, such that
(1.11) L% £ £ (A)Vieu,

will be called dual to the primary problem (1.6).

For the problem 2,, let us introduce the set
Uy ={A|AeQ, divi+[f=0, i.v|, 20},
where 5|, = 0 is defined as follows -
{s,y0> 20, Yvek,,
and the functional (complementary energy)
7:0) =13 [413.

The problem to find 1° € %, such that

(1.12) (A% = #,(A) Vieu,

will be called dual to the primary problem (1.7).

It is easy to prove that both the primary and the dual problems possess unique
solutions. Moreover, there exists an interpretation of the solutions of the dual
problems in terms of the solutions to the primary problems.

Theorem 1.1. |. Let u be the solution to the primary problem (1.6) and 1° of the
dual problem (1.11). Then

, . 70
=oujox;,, i=1,...,n, A, =u.
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2. Let u be the solution to the primary problem (1.7) and 2° to the dual problem
1.12. Then

0 =gradu .

Let us prove part 1 of the theorem. We shall need the following
Lemma 1.1. (Saddle point). There exists we H'/*(I'), w = 0 such that

(1.13) F(2°) = QA0 vy £ (20 = Q0w wy £ F(A) = (A, w)

Vue H'(I'), pz=0, VieQ,,
where

Q= {A|2e L@ 2= [X. Ayi]. V€0, Zyuy =f+diva}.

The proof is based on the following Corollary of the Hahn-Banach theorem.

Let V be a normed vector-space, S and T two convex subsets of V such that S
contains at least one interior point and T does not contain any interior point of S.

Then a linear bounded functional F e V', F £ 0 and a number a« € R' exist such
that

(1.14) (F,sy Zza=<KF,ty VseS VteT.

Let us choose V= R' x H™'V*I'). Define S as the set of all pairs {&¥(4) —
— P4(2°) + so; —A.v+ s}, where 1€ Q, soeR', 5020, se HVX(I'), 5|, = 0.
Let T be the set of pairs {—1t,. —t}, where t,eR', 1, > 0, te H "*(I'), 1|, 2 0.

S and T are disjoint. In fact, assuming that

F2) = P + 50 = =19, —Iv+s=—1,
we deduce

S < 720, 2v|rz0, 2eQ;,

consequently A € %, and we obtain a contradiction with (1.11). Obviously, S and T

are convex. In order to prove that S contains an interior point, let us consider the
ball

1

B, ={ye H VI), |Wlln-in) < &)

!//,

and the Neumann problems

(1.15) —Au+u=f in Q, dufdv=—y on 0Q,
where i € B,. Denote u,, the solution of (1.15) and

(1.15) Aiuy) = Ouylox;, i=1,...,n, Ay(u)=u,.
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Then A(u,)e Qp, —A(uy).v = . Let uy be the solution of (1.1

5) for ¥ =0 and

denote A(u,) the corresponding vector. Then the point {%(4(u,)) — 7(2°) + &, 0}

is an interior point of S, because
(Z1(u) — 71(°). F1(Auy)) — &1(%) + 26) x B

In fact, the above interval can be obtained for A = A(u,), 0 < s,
B, for s = 0and A = A(u,), } € B,

. S.

< 2¢ and the ball

Consequently, there exist a € R', ¢ € H'/*(I') and « € R" such that

(1.16) IOCI + “‘PHUUZ(I‘) >0,

ao(L1(A) — F1(A°) + s0) + {=A. v+ 5,00 Za= —ogly + {—1, )

VieQs, soeR', 5020, seH VXI), 5|r§0.
to>0, teH (), 1;=0.
Hence oy 2 0, ¢ = 0 and

(1.17) 0o F1(2) = F1(20) = ovip> =0 VieQ,

follows.
Suppose that oy = 0. Then

(1.18) oov,p)y =0 Vie Q.
But we may write
reQr=2=9"+4q", ¢"€Qp, 4°€Qo,
where ¢’ is a fixed chosen vector. Consequently,
Qq° v, 0> = = <q" v, @) = const Vg°e Q,,

where Q, (i.e. Q, for f = 0) is a linear subspace of [L,(Q)]"*"
1y — yx.vmaps Q, onto H™'/*(I'), therefore (1.18) yields

(F, ¢y < const VFe H*l/z(r) )

which implies ¢ = 0. Thus we arrive at a contradiction with (1.1
positive.

Denoting ¢/o, = w, from (l.I7) it follows
(1.19) P(A°) £ F(2) = (ovywy YieQ,,

where we H'*(I'), w = 0.

o€ R,

. The operator [ :

6) and a, must be

19



Inserting 4 = 1° and using the definition of %, wé obtain

(1.20) (A% v, wy =0.
Hence
(L.21) Aoy 20=_Q%v,wy YueH* ('), p=0.

The assertion (1.13) follows from (1.19) and (1.21). Q.E.D.
The proof of Part 1 of Theorem 1.1. Let us define

H o= (L@, (o =3 G o

i=1

H, = {leH|3veHyQ), s = ANv) (see (1.15))")
H, = {ieH|J (A".grad v + vd,,;)dx = 0 Yoe Hy(Q)} .
0

Let @ be the solution of the Dirichlet problem
(1.22) —Ali+id=fin Q, yi=w on I,

where w e H'/?(I'), w = 0 is the function from Lemma 1.1. There exists u, € H}(<Q)
such that yu, = w on I' and we may write i = uy + vy, vy € Hy(Q).

Let A€ Q;. Then A — A(ii) e H,, because A(ii)e Q,. H, and H, are orthogonal
subsets of H, as follows from their definition.

For 4 € Q, we may write
F) = 4 = M)l = 4 = 4@) + o)l = 4 =A@ + [ Avo)5 -

Hence #(q) < #(2) for any A€ Q, if and only if ¢ = A(@). Using the definitions
of Q, and (1.10) we obtain

(4, Mug))u = f (2. grad ug + uo(div A’ + f)] dx = <A.v, w) + (f. ug)o »

52(0) = F1(2) = Goovowy = (fuo)o + [ Auo)7 -
Consequently, the right-hand inequality of (1.13), i.c.
FA0) = Q0 vowy £ F() — v wHVieQ, .

holds if and only if 1° = ¢ = A(#).

1y HI(Q) is the closure of CF(2) in H'(%).
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Moreover, we have yii = w = 0on I,
(1.23) A° V| = dijov|, 2 0, adlove HVA(T),
(1.24) (oijdv, yiiy = (A% . v, w) =0

according to (1.20). Hence # is a solution of the Problem 2 if the Signorini’s condi-
tions (1.2) are taken in the functional sense. Finally, we show that @ solves the
variational problem (1.6) and from the uniqueness if follows that u = 4.

In fact, since K, is a closed convex cone with the vertex {0} u is the solution
of (1.6) if and only if

(1.25) (u,v)y 2 (f,v)g, VveK,,
(1.26) (u,u)y = (f, u), .
Let us verify (1.25) for @. From (1.22) and (1.10) it follows

0 < (diifov, yv) = J (grad @ . grad v + v divgrad ii)dx, VveK;.
2

On the other hand, (1.22) yields that
divgradd =i — f.

Consequently, we have for any v € K

0 §f (gradﬂ.gradv«}—ﬁv)dx—J’fvdx = (@, 0); — (f,v)o -
2

Q

Similarly, from (1.24) we deduce

0 = <aafov, yay = (i, @)y — (f @)o - QED.

The proof of Part 2 of the Theorem 1.1 is analogous.

2. FINITE ELEMENT APPROXIMATIONS TO THE PRIMARY PROBLEMS

To propose a consistent dual finite element analysis, we shall consider straight
triangular elements only and therefore study problems on polygonal domains.
In fact, there would be difficulties with curved equilibrium elements for solving
dual problems of class (ii). For class (i), it seems that the application of curved
finite elements in the analysis is possible, but the construction of one-sided approxima-
tions (see Section 3) becomes then more complicated.
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For simplicity, we restrict ourselves to plane polygonal domains, which leads,
on the other hand, to some excessive regularity assumptions imposed upon the
solution. We believe, however, that the results on the rate of convergence could
hardly be reached without such regularity requirements.

Thus let Q = R* be a polygonal bounded domain. We carve it into triangles T
generating triangulation 7 ,. Denote h the maximal side of all triangles in 7. Let
V, be the space of continuous piecewise linear polynomials on the triangulation 7.

We say that the family of triangulations {3‘,,} with 0 < h =<1 is o-f-regular,
if there cxist positive o and f3, independent of h and such that (i) the minimal angle
of all triangles in 77, is not less than o for any h and (ii) the ratio between any two
sides of .77, is less than f.

Define

Ky ={v]ve Vol 20} = VN Ky,

Ky = {v|veV, v, =0 0|, 20} =V,NK,.
We say that u, € K, (i = 1,2) is a finite element approximation to the primary
problem 2,, if
(2.1) Liu) £ Lv), YoekKy.
Since K, are closed convex subsets of H'(Q), it is easy to see that there exist unique
solutions of the problems (2.1). To find them we can apply e.g. the algorithm of

Gauss-Seidel with constraints, as follows.
Any v € ¥, can be written in the form

M
v(x) = _Z] v; @(x)
j=
where ¢; represent the basis functions. Then it holds
UEK1h¢>{Ujk >0, k=1,...,p, p <M},

where the indeces j, correspond with the boundary nodes P;, of 7. Similarly, we
have

veK,y<{v, =0 if P, el, v, 20 if P, el,}.

The functionals Z(v) on K, may be written in the form

Zv) =v'Av — fTv,
where

v = (171, ceey UM)T’ f,' = (f, (/)j)o
Aij = (o5 (Pj)l or A;; = f grad ¢; . grad ¢; dx .
Q
respectively, (i,j =1, ..., M).
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We choose an initial vector v° € K. Then vectors v'-/, v2/, ... (j = 1,2, ..., M)
are calculated step by step, where

m.j __ m m o m—1 m—1 _
vl = (o, Lo ot ), m= 1,2,

m
Jk

m

vi, = Proj.g ,, ¥ for k=1,...,p and 0o} =} otherwise, or

mo__ : T
v =0 if P; er,,

m

v7 = Proj., 0% if P;el,,
0 = (= LAt = Y AT+ )4, (G=1,....M),
i<j i>g

Pr0j<0,m) w = max {0, w} .
It is well known (see e.g. [5] Chapt. 4 § 1.4) that

(2.2) lim [v" — o] g = 0,

m-— o

where

M
u, =y wp;.

Jj=1

Next let us estimate the distance between the solutions u and u, of the problems
(1.6) or (1.7) and (2.1). To this end, we shall need the following

Lemma 2.1. (cf. [7]). Let #(v) be the functional defined on a closed convex subset
M of a Banach reflexive space B. Suppose that ¢ is twice differentiable in B (in the
sense of Gdteaux) and the second differential is positive definite and continuous,
i.e., such positive constants o, and c exist that

az]* £ #(us2,2) < ¢|z||*, VYueM, VzeB.

Let M, = M be a closed convex set. Denote the minimizing elements of f(v) over
M and M, by u and u,, respectively. Suppose that there exists w, € M, such that
2u — w, € M. Then it holds

¢ 1/2
(23) I — ] < (?) = w,] .

0
Proof. From the Taylor’s theorem it follows that such 3 exists that 0 < 3 < | and
2.4y A(uy) = F(u) + F'(wup, — uy + F"(u + uy — u)suy — u,uy — u) 2

> 7(u) + oou, — ul?,
because

v
o

S, uy — u)
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On the other hand, for any v € M, we have
FW)=gW)+ Fu,o—u)+ #(u+ 90 —u); v —u,v—u)= #(u,).
Inserting v = w, and v = 2u — w, into the condition #'(u, v — u) = 0, we obtain
F'llu,w,—u)y=0
and consequently,
25) F(up) = F(wy) = F(u) + F"(u + Iy(wyp — u); Wy, — u, w, — u) <
< Au) + cfw, — ul?.

Finally, (2.4) and (2.5) result in (2.3). Q.E.D.

Applying Lemma 2.1 to problems (1.6), (1.7) and (2.1), we may set ¢ = &,
M=K, M, =K, (i=1,2), B=H'(Q)for (1.6) and B = {ve H'(Q), yv|r, = 0}
for (1.7). Then it is readily seen that ¢y = ¢ = 1 can be taken for &£, and ¢ = 1,
oy > 0 for Z,.

Thus if we find w, € K, such that 2u — w,eK; (i = 1,2) and w, sufficiently
close to u, then u, is of the same order of accuracy as w,. Fortunately, we can prove
the following

Theorem 2.1. Assume that u e H¥(Q) and ue H¥I,), m =1, ..., G, where I,
denotes any side of the polygonal boundary I.

Then there exists w, € V) such that
(2.6) 0<w,Zu on I

and, if the triangulations are a-f-regular, it achieves the optimal order of appro-
ximation:

G
2.7) [u = walle = Ch(lulz + X J#lur.)
with C independent of h and u.

Proof is based on two auxiliary lemmas.

Lemma 2.2. (One-sided approximation of u on the boundary). Let u satisfy
the assumptions of Theorem 2.1. Then there exists a linear spline function , € C(I')
with nodes given by the triangulation ,, such that

(2.8) 0Zy,<u on T,

G
(2.9) ' ”u, - l//hH(z:(r) h? ZII“ i,r... s

lIA
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where u, is the linear interpolate of u on I (with the same nodes)

lelea = n:frx I‘P(s)l ’

Il

lo]3 r.. f [d?¢/ds*]*ds .
I

Proof. Consider the nodes of 7, on any closed polygonal part 69,") of the bound-
ary I' and denote the corresponding arc parameters by 0 =s; < s, < ... < 5.
Let ¢;, (j = 1,2, ...,n) be the basis linear spline functions on 0Q(¢,(s;) = &;;)
and define

Sp={aeR, |0 Y a;o,s) < u(s), Vseo).
i=1
We say that a® € S,, is the maximal element of S,, if

§; _Za?(pjds; Y a;p;ds, Vaes,.
E

2, J=1 o J=1

The maximal element of S, exists. In fact, it is readily seen that S, is bounded, since
0= a; 2 ulsy) < Julleury = Cllufs,

and closed in R". The integral to be maximized is a continuous function of @, conse-
quently, the maximum is attained in the compact set S,.

Let us denote
Vi =Y a50;.
i=1
Then for any j = 1, ..., n at least one of the following two conditions is satisfied:
(P1) Uils;) = u(s;)
(P2) o€ (5510 8) U (55 85400
(where we define s, = s,, 5,45 = ;) such that
Ui(o;) = u(o;), (d¥/ds) (o) = (du/ds) (o)) )

1) £ is a multiply connected domain, in general.
2) From ue H3(I},) it follows that du/ds € C(I},).
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In fact, let for some j, neither (P 1) nor (P 2) hold. Then obviously a positive &
exists such that

Vo=, +ep; Su, VsedQ,.

E{P Y, ds < (ﬁ Yyeds,
e Ie

which contradicts the fact that a@° is the maximal element. In case of (P 2) we may
write

But then

u(s;) = ¥ls;) = J“j e (z) (s; — z)dz,

2
5 ds

d?u\?
‘u(sj) - l//h(Sj)lz = 113§ (gﬁ;) dz,
BIoJn :

and (2.9) follows. Q.E.D. .

Lemma 2.3. Let ¢ € C(I') be a linear spline-function with the nodes determined
by the o-f-regular triangulation .

Then there exists v, € V,, such that v, = ¢ on I' and
(210 ol = b2l
Proof. Denote Te J, the closed triangles and let @, be the union of all Te 7,

such that TN\ I *+ @&. Thus Q, is a “boundary strip” of Q. Let v, €V}, v, =0
in Q2 — Q,and v, = @ on I'. Obviously, we have

max [”h(x)‘ = |elea) -
xeN
In any triangle Te Q, with the sides a < b < ¢, it holds

lavh/axkl = |nk/n3| , (k=1,2),

where n is the vector normal to the plane graph of x; = v,(X1, x,). Since

|n3. > a’sina, |nkl < 2¢ max lvh|
xeT

lIA

zcll(/)”c(ﬂ ’
we obtain, making use of the o-f-regularity of 7,

|ov,/Jox,| £ 2ca™?(sina) ™! @], < Ch™ Mo

|C<,), YTeJ,,
where C is independent of h, ¢ and T, because

ca”* < ¢ '(sina)"? < (min¢)™! (sing) 2 < Bh~!(sin 2)™2 .
TeTn b '
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Finally, we have (cf. also “inverse incqualities™ for V} spaces)

2 2
ol 3 :‘[ (vf + (Q},,) >dx < Cmes Qofén(t + h72).
o AN )

Since mes Q, < Ch, (2.10) follows. Q.E.D.

Proof of Theorem 2.1. Let i, be the one-side approximation of u from Lemma
2.2. Introducing

(2.11) ¢ =u — Y,

we construct the function v, € ¥, according to Lemma 2.3. Let u, be the linear inter-
polate of u on the triangulation .7,. Then the function

W, =ur —uv,el,
satisfies (2.6) and (2.7). In fact, on I' it holds

Wy =up— @ =y,
and (2.8) implies (2.6).

Furthermore, it is well known that
(2.12) lu — u,|| < Chul,.

From (2.9) and (2.10), (2.11) we obtain

N

G
(2.13) loalle = A2y = Yullea = C"(ZJ“

m=

Since

U—Ww,=u— U+ U —w,=u—u;+ v,

from (2.12) and (2.13) we deduce (2.7). Q.E.D.

Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied. Let u, be the
finite element approximation to the primary problem 2. Then

(2.14) u = u,, = o(h).
The proof follows from Theorem 2.1 and Lemma 2.1, because
2u—w,2u—w, 20 on I,
consequently, 2u — w, e K and w, € K. Q.E.D.
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As the finite element approximations to the primary problem %, are concerned,
one can prove an analogue of Theorem 2.1, where u = O on I', and u € H¥(I',, \ T,
is assumed. Then the rate of convergence (2.14) is also valid.

3. FINITE ELEMENT APPROXIMATIONS FOR THE FIRST DUAL PROBLEM

In case of the dual problems, we have to distinguish strictly the problems (1.11)
and (1.12), because of the different construction of the finite-dimensional subsets
of % and %,.

Let us start with approximate solutions of the problem (1.11). Using the definition
of #, we transform (1.11) into an equivalent problem: to find ¢° € %, such that

(3.1) 1(¢°) < I(q) Vge,,
where
U = {qlge Q. q.v|, 20},
G1) 16) = 4 a3 + laiv al}) + (7. div
Then
W=4q}, (i=1,...,n), A0, =f+divq°.

Consider again the o-f-regular triangulations 7, of Q = R? and the spaces V, of
linear splines on 7 ,. Introducing the subset

Uow = %o N [Vh]z .
we may define:

a vector ¢" € %,, will be called a finite element approximation to the dual problem
(3-1), if

(3:2) 1(q") = 1(q) VqeUo,.

The linear space Q with the norm
2
lallo = (X la:fls + [div qf5)*"

is a Hilbert space, %, is closed in Q and convex. Then %,, is convex and closed
in Q and the problem (3.2) possesses a unique solution.

Let {w', w?, ..., w"} create a basis of V. Then
N
qeUop<>{q =3 yw, Byz0},
i=1
where Bis a (p x N) matrix and the rank of B equals p, p < N.
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The conditions By = 0 are generated by the boundary condition ¢ . v = 0.
The problem (3.2) can be rewritten as follows:

(3.3) F(y) = 4y"Ay — y'b = min
over the set
(3.4) Y= {yeR", By 20},

where A is the corresponding Gramm matrix and b is a vector.

Since the matrix B is not diagonal, we do not employ the algorithm of Gauss-
Seidel with constraints, but use e.g. the algorithm of Uzawa (cf. [5]), which transforms
the side conditions into a simpler form.

Denote
R, = {z|zeR”, z 20}

and choose an arbitrary z' € R%. Then we solve the problem
Ay' = b 4+ B'z! .

we calculate

Having y" and z" (m = 1,2, ...)
z"t1 = Py(z™ — oBy™),
Ay"*' = b + BTz"*!
where Pg is the projection of R” onto R%, i.e.

=t = max {0; 2 —o(By");}, =1 ....p

=J
and g is a sufficiently small positive parameter.

It is well known (cf. [5] chpt. 4, § 5.1) that
lim [[y" — y°|gn =0 for m - 0.

where y° is the solution of (3.3), (3.4).

To obtain an estimate of the distance between the solutions ¢° and ¢" of the
problem (3.1) and (3.2), respectively, we may again apply Lemma 2.1, where ¢ = I,
M= Uy, M, = Uy, B=0Q, a, = ¢ = 1. Consequently, for any vector " e %,,
such that 2¢° — 1" € %,,, it holds

(3.5) la® = 4"l = lla° = -

A suitable vector 1" can be found, as follows from
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Theorem 3.1. Assume that q°e[H*(Q)]* and ¢° .ve H¥I',) m =1, ..., G,
where I, denotes any side of the polygonal boundary TI.

Then there exists t" € Uy, such that
(3.6) 0" v<¢®. v on I

(almost everywllere) and, if the triangulations are a-f-regular,

() Io® = o = €S, L4513 + 3 [ M)

m=
with C independent of h and ¢°.
For the proof we need two auxiliary Lemmas.

Lemma 3.1. (One-sided approximation of the flux on the boundary). Let
q° € %, satisfy the assumptions of Theorem 3.1. Then there exisi linear spline
functions ;' € C(T,,), with the nodes determined by the triangulation I, and
such that

(3.8) 0=yy<q°.v on I, Vm,

G
3 0 2
Wyl

m=1

1A

(3.9) “q? Y = !th%’w

m
hos

wheie Yy, is defined on JI',, in such a way that its restrictions on to T',, equal

Sfurthermore "

)

”(p”,m =1max (sup I(p(s)

=Em=G sely,

q} denotes the linear interpolate of q° on 7, and the seminorm [
defined in Lemma 2.2.

2.1, has been

Proof. For brevity, denote ¢°.v = 1 and let #; be the linear interpolate of t on I,
with the nodes of 7,. Note that

(0]
ty=4q7.v.

The assertions (3.8), (3.9) can be proved like (2.8), (2.9) in Lemma 2.2, replacing
only I' by I',, and u by t.

Lemma 3.2. Let ¢, € C([,), m =1, ..., G be the linear spline-functions with

the nodes determined by the o-f-regular triangulation 7.
Then there exists w" € [¥,]? such that w*.v = ¢, onT,, for allm = 1, ..., Gand

2
(3.10) (X Iwill)'" = ch='"[o]r.,
i=1
where ¢ is a function such that its restrictions onto I',, coincide with ¢,, for all m.
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Proof. Consider again the “boundary strip” @, of Q like in the proof of Lemma
2.3. We set wi(b;) = 0, j = 1,2 at all vertices b; € @ — I'. Then it suffices to deter-
mine and estimate the values wif(a‘-) at the vertices a; e I'.

1. Let a; be a vertex of the polygonal boundary. Denote ¢(a; +), ¢(a; —) the limits
of ¢ from both sides of the vertex a; and v+, v— the corresponding unit outward
normals to the boundary. By the conditions be

wh(a,-) V=

I

‘P(ai—),

wha;) . v+ = o(a;+)

the values w/(a;), j = 1, 2 are determined and it holds
G el = (olam)] + o) finaf . J =12,

where «; is the interior angle of I at the vertex a;.

2. Leta; e, be a vertex of 7, but not a vertex of I'. Denote v = (vy, v,) the unit
normal to I',, and let

[vkl = max {|v1|, lvzl} .
Since 2v¢ = vi + v3 = 1, we have |v| = 1//2. We choose

h -1
wl-:(ai) = Vi (p(ai)
and the remaining component

whla;) =0, (p+ k).
Then obviously

(3.12) Wi(a:)| = V(2)

From (3.11), (3.12) it follows that a constant C exists such that

ola)|. j=1.2.

|wi(a)| = Cllo|lr., (j=1.2), Va;el

and consequently,
I ~
max [wilica = Clofr,. -
j=1.2
Using the a-fi-regularity of 7, we can derive the estimate
lowllox,| < Ch™ )¢, VTeT,

(cf. the proof of Lemma 2.3) with C independent of h, ¢ and T. The rest of the proof
is parallel to that of Lemma 2.3. Q.E.D.
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Proof of Theorem 3.1. Let y, be the function defined in Lemma 3.1. Introduc-
ing
_ 0
¢ =4qr.-v— Yy,

we construct the vector-function w" € [¥,]? according to Lemma 3.2. Then the func-
tion

th=gq) —welV]?
satisfies (3.6) and (3.7). In fact, on every I',, it holds

th

V=41 = o =Y

and (3.8) yields (3.6). Besides, we have

(13 = aiyl = crlall (= 1.2),
(319 lalo = (3 lal) vaeo.

From Lemma 3.1 and 3.2 it follows that
2 G
(315) (X [wilD"Z = Ch™ 2 a? v = Wil = CH(E | - vzr,)' 2
j=1 m=1
Since we may write

la® = o = 1a° = af + o = 10° = o + W,

(3.13), (3.14) and (3.15) result in (3.7). Q.E.D.

Corollary 3.1. Let the assumptions of Theorem 3.1 be satisfied. Let q" be the finite
element approximation to the problem (3.1). Then

la® = a"lo = o).
The proof follows from Theorem 3.1 and Lemma 2.1. In fact,
¢ =" yrzq® =z 0

by virtue of (3.6). Therefore2q° — 1" € #%,, t" € %,, and we may use (3.5), (3.7).
Q.E.D.

Remark 3.1. If g* is a solution of (3.2), then
" =1{q", 45 f + divq"} e %,
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is an approximation to the dual problem (1.11). By virtue of Theorem 1.1 and
Corollary 3.1, it holds for h - 0

o(h), (i=1,2),

HCI? - 6“/0Xi]‘0

Il

[div g" + f = ull, = O(h).

In Section 6 we present also some a posteriori error estimates for ¢".

4. FINITE ELEMENT APPROXIMATIONS TO THE SECOND DUAL PROBLEM

Let us consider the dual problem (1.12). Assume that the boundary I consists of J
mutually disjoint closed polygons 0€; i.e., let

J

(A1) I'=U0Q;, dQ;N0 =@ for j+k
i=1

and let

(A2) mes(0Q;NT,) >0, j=1 ...,J.

Consider again the a-f-regular triangulations 7, of  and assume that
(A 3) the boundary points of I', are vertices of I,

Let us construct a fixed vector 1 € Q such that
divi+f=0.

(We may choose e.g. 1 = {1, 0}, where

1 = —f 11, x,) di)
0
Then it is readily seen that
(4.1) AeU, <A —A=qekK,

where
K=1q]|qeQ, divg=0,q.v, = —1.v.}.

Instead of the finite element subspaces ¥}, we have to work with subspaces of “‘equi-
librium elements” which satisfy the equation

divg =0

at least in the sense of distributions (cf. (1.9)). To this end we construct piecewise
linear vector-functions as follows (cf. [2]. [3] and the references therein).

33



For any triangle Te 7, we define the set
AM(T) = {q|qe[P(T)]*, divqg =0} .

Henceforth P,(A4) denotes the space of linear polynomials on the set A.

Furthermore, let
Ny=1{q]qe[Ly(Q)), q|re.#(T)NTeT,, q.v|r +q.v[;, =0 VxeTN T},

where the last conditions means that the “flux” q.v is continuous when crossing any
interelement boundary between any two adjacent triangles T and T'.

It is easy to see that .47, is a linear finite-dimensional manifold and that 4", = Q,
because div q = 0 for any q € A7, in the sense of distributions.

Let us define the mapping
Iy e 2([(H(T)]* 5 [P(T)])

by the conditions that the L,(S;)-projection of the flux l'vlsiis equal to the flux
(I174). VIS.- for each side S; of the triangle T. Define also the set

A(Q) = (1| 2e[H'(Q)]*, divi =10}
and the mapping r, of 2(Q) by the conditions
(rd)|r = e VTeT,.

It can be proved (cf. [3]) that

4.2) rye L(R(Q); N))
and
(43) 12 = ndlaoy = CHJ2, Vae[HAQ),

where C is independent of h and 4,
2
il = (5, 2 Il
Assume moreover that
(A4) IGe[HY(Q)]*, divG=0, G.v, = —1.v,.

Let us denote —Z.vlr = g and construct the function g, € L,(I',) such that the restric-
tions g,|s, are the L,(Sy)-projections of g onto Py(S,) for each side S, = I', of the
triangulation . Note that g, is piecewice linear with discontinuites at every node,
in general.
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Using (4.1), we can derive that the problem (1.12) is equivalent with the following
problem: to find q° € K such that

(4.4) J(q°) = J(q) VqeK,

where
J() = ]q* + (L 9),

2 2
lalP = S Jadi . (o0) = 5 ado.
We say that q" € K;, is a finite element approximation to the dual problem (4.4) if

(4.5) Jg") = J(q) VqeK,,
where
K, = {q l qe ANy, q. vlr,, 2 gh} .

Since K, is convex and closed in [L,(2)]?, the problem (4.5) has a unique solution.

Let us describe the algorithm of solving (4.5) in detail. Any element q’ € A7, is
determined by a vector 8 of N” flux parameters” (see [3]), N being equal to six-times
the number of all triangles in 7. In each triangle T, € 7, with vertices ay, a,, d;
it holds

w = Cp°,
where
we = [gi(a:), g5(ar), 45(az), g5(az), d5(as), g5(as)T".")
Be=[p% - BT ?)

q° denotes the restriction of q onto T, and the (6 x 6) matrix C, is regular, because
the inverse matrix is

[P0 . .. |

W oL

C'=10 0o ¥ o

0 0 2o

. v
3) 3
l. . . R )J

with v® denoting the outward unit normal to the side S, = a4+ (k= 1,2,3
and a, = ay).

1) The superscript “T” denotes the transposed matrix.
2 ﬂf are defined as limits of the flux q . v at the vertices of a side of T,,. The components of f,
however, are not independent — see (4.9), (4.10).
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For x e T, we may write q in terms of the restricted basis functions:
3
qi(x) = X gilay) o,(x), (i=12).
i=1
If we introduce the vector-functions

Q= [‘Pl- 0, @3, 0, @3, O:IT >

b, = [0, 1,0, ¢,,0, ‘P3]T >
then obviously
q; = (WQ)T‘pi = diw*, (i =1,2),

f (¢5)7 dx = (w")Tf Q@7 dx we .
Te Te

Consequently, we have

(4.6) :; la:ll5 =ii ,.ZA L (¢°)* dx = %(we)rj

=
e p Te

= ;(ﬁ")T A= fTAB,
where A is symmetric and positive definite. In fact,

e

A = CIJ (0] + @,07)dx C,
Te
are symmetric and positive definite 6 x 6 matrices, because

(BVA B = Zf (@) dx = 0w =0=f =0,

i

Likewise, we may write

||M~

1 i=1

i

2
(g o= Y| Adiwedx = — Y (b) = —b'p,
TeJ) T, Te

where
2
(47) b= — % ij Z0;dx .
i=1 T,
Consequently, (4.5) is equivalent with the problem to find B € # such that
(4.8) J(B) < #(b) VBeA,
where

F(B) = IBTAB — bTp,
# ={BeR", DB =0, EB > e(1)} .

(0,07 + ®,0))dx w' =



Here D is a p; x N matrix corresponding (i) to N/6 conditions of the vanishing
divergence — of the form (cf. [3])

(4.9) LB + B3) + L(Bs + Bs) + L(BT + B5) =0,

(1; denotes the length of the side S; of T,) and (ii) to conditions of continuity for the
fluxes along the interelement boundaries — of the form

(4.10) Bi+ Bi=0.

Thus D = 0if and only if thre corresponding function q belongs to A",.

Finally E is a (p, x N) matrix such that Ef 2 e(1) corresponds with the condition
q.v|ra 2> g,- The rows of E consist of zeros and one unit. One can easily verify that
under the assumptions (A 1), (A 2), (A 3) we have p = p; + p, < N.

D
B = .
H
To solve the problem (4.8) we can use again e.g. the algorithm of Uzawa (see, however,
Remarks 6.2—6.7).

Introduce the convex set

Let us denote

A={zeR"|z; 2 efl) for j < p,}
and choose an arbitrary z' € A. Then we solve the problem
AB' = b + B'z' .
Having ™ and z", (m = 1, 2, ...), we calculate
"t = P(z" — oBB™)
Aﬂm+1 = b + B'z"*!

where P, is the projection of R” onto 4, i.e.

y = Pgesdti T T2 P
v; =max{e(i), t;}, j> py.

and ¢ is a sufficiently small positive parameter.

It can be shown (cf. e.g. [5]-chpt. 4, § 5.1) that

(4.11) lim ||p" — B|pv = 0.

m=» o0
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5. CONVERGENCE OF THE FINITE ELEMENT APPROXIMATIONS
TO THE SECOND DUAL PROBLEM

In this section we analyze the distance between the solutions q° and q" of the
problems (4.4) and (4.5), respectively. Then setting A" = 1 + q", we obtain the
distance between the solution 1° = 1 + q° of (1.12) and /", as A° — " = q° — ¢".

Define the following convex cones
% ={qeQ|divg =0, q.v[, 20},
C=FNN={qe,|q.v, 20}
Under the assumption (A 4) it holds
(5.1) ®* -G=Ue%.

If we construct the projection r,G, then r,G e 4", according to (4.2). Note that the
flux ("hG)-Vls,, coincides with the L,(S;)-projectionof G.v = —1.v = g onto Py(S,)
on each triangle side S, < I',, therefore

(rnG).v=g, on TI,.
Thus the difference
(5.2) q —rnG=U,e4%,

and we come to the equivalence
qeK,<>q—nrnG=V,ec4%,.
Lemma 5.1. Let a W, € ,, exist such that 2U — W, € €. Then it holds
(53) o~ q < Ju - Wi + |6 - rG] .
Proof. Set ¢ = G + W,. Then qe K and
2¢° —q=2G+U)—(G+W,)=G+2U - W,eK.
The solution q° of (4.4) satisfies the inequalities
DJ(g%q9-9°) 20,

DJ(q° 294° — q - q°) = DJ(¢°.q° — q) = 0

where

DJ(q, p) = (9. p) + (L, p)
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is the Giteaux differential of J. Consequently,
(54) 0=0JQ°q—-4q°)=DJQ" W, -U)=(q". W, - U)+ (L W,-U),
Second, let us choose § = G + U, e K. Since ¢ — q° = U, — U, we obtain
(55) 0=DJ4°q—q°)=DJ)q" U, - U)=(q°. U, - U) + (L U, - U).
Finally, choosing ¢ = r,G + W, € K,, we may write
(56) 0=DJ". q—-4q")=DJG' W,-U)=(¢""W,—-U,)+(LW,-U,).
Using (5.4), (5.5) and (5.6), we obtain
57 @ -9 U -W)=(q U-W,-U+U)+ (¢ W,-U)=
2(AW,-U)+(ALU-U)+ (LU, -—W)=0.
Since
-¢=6+U-(nG+U)=G-rG+U-U,,
making use of (5.7), we may write
le° — "> =(4° ~ 94".G — 1G) + (¢° — ¢, U - U, + (U, - W,)) =
(4"~ .G~ G + U= W)= [q° — ¢ |G - G + |U - W)
Q.E.D.

The next problem is to show that there exists W, e %, sufficiently close to U.
Fortunately, we can prove the following

Theorem 5.1. Let U = q° — Ge [H*(Q)]* and U.ve HXT', (\T,) for any side
I',, of the polygonal boundary I.
Then there exists W, € €, such that 2U — W, € ¢ and

M
[U-w,| = C{I12|U'2 + W32 ZJU- Vlnl(r,,.mru)} .

The proof is based on two auxiliary lemmas.

Lemma 5.2. (One-sided approximation of the boundary flux). Let the assumptions
of Theorem 5.1 hold. Then there exists a piecewise linear function 1, on I' with
the nodes determined by the triangulation I, (discontinuous at the nodes, in gene-
ral) and such that

(5.8) J t//,,dss:J~ (ryU).vds, j=1,2,...,J,
Ry o,
osy,sU.v on T

as

M
(5.9) (V) .y — V]l pary < Ch? ;|U NMwramara s
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where
209,
'Uletr".nru; = [[d®0/ds*| Lyr,nra -

Proof. Denote U.v =t and (rhU).v = t,. Let s; be the parameters of the nodes
of 7, on I'. Consider the interval-side- S; = (s;, siv1) © I, Let 1; be the linear
function such that t; = t at the end-points s; and s,, . First we construct a func-
tion on S;.

1. If t = t, for all s € (s;, 5;4 1), We set Y} = t,. Then obviously Y} = 0 on S; and
we obtain for the L,(S;) norms

(5.10) [i = ol =l =6l + e = u] = ca?fr

>

where 17 = d?t/ds®. In fact, 1, is the L,(S;)-projection of ¢ onto the subspace P(S;)
and we may use the Bramble-Hilbert Lemma (cf. [8]) to get the estimate for ¢ — .
The same Lemma can be employed to estimate t — ;.

2. Let there exist points s € S; with t < t;. Since H*(I', N\ I",) = C'(I'y N\ IL),

we can find a point ¢ € Esuch that the tangent to the graph of ¢ at ¢ lies under the
graph of t and, if ;] is the function, the graph of which coincides with the tangent,

then Y/} = 0 on S;. We have — for the L,(S;) norms —
lvi = nll = i = o] + [l = ul -
As in the proof of Lemma 2.2 we obtain
max [t(s) = ()] = W[ Lagsy »

I¥h = tleasy = 221 | acss -
Therefore

(5.11) [vi — t] < Ch?

-

In this way we construct a piecewise linear function y, on the whole I', such that
'//h[s, =y, VS, T,.

From (5.10), (5.11) it follows that

M
(5.12) I¥n = thl Lo = Zr”‘“ — tLysy = Ch* ;”‘"| 2 LT Ta) -
Define
Yp=t,+A; on 0Q;—-1I,, j=12,...,J,
where
4; = [mes (0Q; — Fa)]_1 (th — ) ds,
02inla

Aj=0 if 0NT,=2.
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Then it is easy to verify (5.8). Moreover, we have

”'//h - ’h“i;(m,—ra) = AJZ' mes (an - Fa) = H’h - l//hiliz(ﬁlljnl',,) =
M
< Ch* Z‘”’””iz(muru) .
Thus we are led to the estimate (5.9). Q.E.D.

Lemma 5.3. Let a piecewise linear (discontinuous) function ¢ on I' be given
(with the nodes determined by J,) such that

(5.13) J pds =0, j=12...,J.
09,

Then there exists a vector-function w" e A", such that

h

w' . v=¢ on I,

(5.14) Iw"l = ch™2]o] L) -

Proof. Consider the “boundary strip” €, of Q like in the proof of Lemma 2.3.
We may write

J
Qh=UQ£
j=1

j=

(f’m+1

[m-H

Fig. 1

where @ is adjacent to the polygon 0Q;. We determine w" e 4, by means of properly
chosen flux parameters § on the sides of 7, such that

suppw'e Q, .

To this end we consider the strip Q). On 0Q; we choose the flux parameters equal
to the corresponding values of ¢ and equal to zero on 0Q) — 0Q;. As the sides
connecting vertices of dQ; and 0Q) — 0Q; are concerned, we set f, = 0 at the “inter-
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nal” vertices belonging to 0Q] — 0Q;, but the parameters f3; at the external vertices
on dQ; remain to be determined. To each of these sides Iy, I,, ..., l,, a parameter j;
is attached, i = 1, ..., n (see Fig. 1).

First assume that each T; e QJ has at most one side on 09;. The conditions of the
form (4.9) and (4.10) generate a system of n equations

(5.15) af =b,

where
a; =-—-lL, i=12 ,n,
i iv1 = liyy, =1, n—1,
a,, =1

and the remaining entries of the matrix a vanish. Furthermore,
bi = _Im((pm + (P,:),

or b; = 0if T; () 0Q; is a vertex only. The assumption (5.13) implies that

Y b =0.
=1

i

Fig. 2

Consequently, the last equation can be omitted. If we choose f; = 0, the remaining
system has the following solution

i—1
(5.16) Bi=17">b,, i=23...,1n.
p=1

Second, let a triangle T; € @} have two sides I, and I;+1 on 09Q; (see Fig. 2). We
obtain the equation

(.B: + ﬁk) I, = _[q((pq + (/’;) - lq+l((p‘l+1 + ‘Pq++1)-
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Then e.g. B = 0 may be chosen and f, calculated. The remaining system has again
the form (5.15). It looks like the system for a “truncated” triangulation of 02, — T,,
with f8, and p, being considered as given outward flux parameters.

Using (5,16) and the o-f-regularity of 7 ,, we obtain

Si
5.7) g =20 J o ds| < 205 f o] ds < Ch™" o] -
0

09;

The same estimate is true for , and the other parameters in case of Fig. 2. The esti-
mate (5.17) is true also for the boundary parameters ¢,,, ¢,.. In fact, we have

j 02 ds = (1,/6) [0% + (05 + (0w + 021 = (1,J6) (|0u]? + [07]?),

0

consequently

I‘Pm|2 + l‘/’r:lz s 61;1||‘P”iz(r) = Ch*‘llq)l?iz(rw

Let T = Qf be an arbitrary triangle. From (5.17) we derive that

IWZ(Q)| < (sina)™' Ch™ Mg

La(I)

holds for any vertex Q of T. Consequently, we obtain the same estimate for Iw"(x)l
at any x € ©, and therefore

2
W =3 [ ot ax = On2olfar mes = 0 ol
<= n
because mes 2, < Ch. Q.E.D.

Proof of Theorem 5.1. Let i, be the one-sided approximation from Lemma 5.2.
We set

¢ =(rU).v =1,
and consider the “extension” w"e 4, from Lemma 5.3. Then the function W, =

= r,U — w" satisfies the conditions of the Theorem. In fact, we have W, e ./,
and

W,.v=(rnU).v - o =1,
on I', therefore
0=W,.vsU.v
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holds on I',. Consequently, W, € %,. Moreover,
div(QU - W,) =0 in @,
QU-W,).v=2(U—-W,).v=20 on I,
and we conclude that 2U — W, € €. Using (4.3), Lemma 5.3 and 5.2, we obtain
|U- Wi = Uu—-rU+w]=<|U-nuf+|w]=
< C(Us + b 2 o]L) <

M
< c{?|U], + B¥2 Y U igrar) - Q.E.D
m=1

Corollary 5.1. Let the assumptions of Theorem 5.1. and (A 1) — (A 4) be satisfied.
Then

|20 —

| = [q° - q"| = o(n*?).

The proof follows from Lemma 5.1, Theorem 5.1 and the estimate (4.3) applied
to G.

Corollary 5.2. Let f™ be an iterative solution of (4.8) such that (4.11) holds.
Define "™ = 1 + q(B™). Then

(5.18) lim A% — 27| =0 for h—0, m—
if the assumptions of Theorem 5.1 and (A 1)—(A 4) are satisfied.
Proof. We may write 9" = q(B) and using (4.6), (4.11),
(5.19)  [q(B) — q(B™)[* = (B — p") A(B — p") < |A] |8 — B> >0

for m—- .

Since 2° — "™ = q° — q(B") = q9° — q" + q(B) — q(B™), by virtue of Corrolary
5.1 and (5.18)
(2 =2 < |9 = ¢"| + [a(B) — q(B™)] - O

provided h — 0 and m — oo.

6. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED BOUNDS OF ENERGY.

On the basis of the dual analysis described above we can deduce some a posteriori
estimates of errors, like in the theory of classical-bilateral-boundary value problems.

Consider the problem 2, and its variational formulation (1.6). The solution u
of (1.6) satisfies the variational inequality

(6.1) (uyv —u)y = (fiv —u)y VvekK,,
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where (-, +); denotes the scalar product associated with the norm ||-|,. Let ve K;
be arbitrary. Then (6.1) implies

(6:2) 20 2:(0) = 2:@)] = ol = [uli = 20 —u)o 2
2 Jolt = [l = 2w, 0 = )i = fo — ulf.

The term .,S,ﬂl(u), however, is unknown in general and a lower bound for it is needed.
From the duality theory it follows (cf. [5] chpt. 5, § 3) that

(6.3) Zi(u) = Max  Min{ZL(v) — (. yv)},
neH-1/2(r) veH1(Q)
=0
consequently,
(6.4) ZLy(u) = Min {Z,(v) — {u,yod}Vpe HVA(I), p=0.
veH1(Q)

The minimum problem corresponds with the Neumann’s problem
—Au+u=fin Q, Oufov=p on I.

Denoting u,, the solution of the latter problem, i.e. the minimizing element of Z,(v) —
— {p, yv) over H'(Q), we may again use the dual approach with the complementary
energy & (%) to get the lower bound for the potential energy (cf. [3]). Thus

(6.5) Li(wy) = <poyuy = Hu[F = =F1(4(w) .

and introducing the set of admissible vector-functions

(6.6) Ap,={i|ie[L (", (Ao i 2)€Q, Ay =f +diva, A.v|p = pl,
we can use the principle of minimum complementary energy

L(Mp) £ F1(2) Vieda,,
and (6.4), (6.5) to obtain

(6.7) L(u)z —F(2) VieA,,.
From (6.2) and (6.7) we conclude that
(69) o — ul? = 2,0) + 7,2

holds for any ve K, and A€ A, ,, where pe H™"/*(T'), p = 0 is arbitrary.
The estimate (6.8) can be applied to the finite element approximations u, € K,, <
< K. It remains, however, to choose x and A properly. To this end, we employ the

finite element approximations to the dual problem.
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Lemma 6.1. Let u, € K, and g" € %,, be the finite element approximations to the
primary problem (1.6) and to the dual problem (3.1), respectively. Then

69) Y — ul? = Z4(w) + 1) + 373,
where u is the solution of (1.6) and I is the funvtional defined in (3.1").

Proof. From (6.3), (6.5) it follows

(6.10) ZLi(u) = Max (= () = — Min& (M) =
weli-1/2(I) ”
nz0
= — Min Min% (1) = — Min¥(1) = — ,(4°),
" Aedf, A€y

where 2° € U, is the solution of (1.11), because
Af,}l = "le .
neH-1/2(I')
nz0
Setting A° = [41, g5, f + div q°], we obtain
(6.11) Z1(2°) =1(q°) + 3|76 = 1(q") + 4[]S = 7:(#") -
Consequently, (6.2), (6.10) and (6.11) result in
(6.12) Huy — ulf £ 24(u,) — L4(u) = Z4(u,) + F1(2°) £
< Zi(u) + 70" = 24(uy) + 1(g") + 3| 1]5 - QE.D.

Remark 6.1. The finite element approximation u, is not known, in general.
Moreover, a difference of great numbers may occur on the right-hand side of (6.9).
Therefore we transform (6.9) as follows (cf. also Remark 6.2).

Theorem 6.1. Let i, € K,,, be any approximation to the primary problem (1.6)
and q" e Uy, a finite element approximation to the dual problem (3.1). Then

613 - ulf £ 3 o~ auonl + [ + daivet - a3 +
+ 2f q".vi, ds = E(q", ii,) .
Proof. For 2" = [q}, 45, f + driv q"] we deduce, using (6.12), that
i = ul} = 21(@) + 2,04 = $al} - (o + 332G =
= 13 (14 = @13 + 204 @) - (.
where 2,(v) = dvfox,, (i = 1,2) and A5(0) = 0.
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The definition (1.10) implies that

21(/1'?, Aday) — (fs w)o = J [ grad @i, + (25 — f) @] dx =

Q
=My, yil)y = J. q" . vii,ds = 0. Q.E.D.
r
Remark 6.2. All terms of the upper bound in (6.13) are non-negative. For i,
any approximate solution
M
ﬁh = Z v'}lq)j
j=1

(see Section 2), obtained by means of the iterative Gauss-Seidel algorithm with
constraints, can be substituted.
The “exact” g" can be replaced by any
N .
qhm — z y.l;rwj
i=1

if §"" € Uy, ie., if y € Y(cf. (3.4)). The algorithm of Uzawa, however, fails to satisfy
this requircment. Therefore, if the a posteriori error bounds are needed, we recom-

mend to apply e.g. some of the procedures called “methods of feasible directions”
by Zoutendijk [9].

Theorem 6.2. Let i, and q" be the same as in Theorem 6.1. Then it holds
5 :
(6.14) = 224(w) = [ulf = X 4l + [ + dive'[5 = F(g").
i=1

=22 (us) = (fiu)o = F(q").

Proof. Inserting v = 0 and v = 2u into (6.1), we obtain

(619) Jul? = (/. o
Consequently, we have
(6.16) 2L, (u) = luli = 2(f, u)o = —|u||? -

Therefore the left-hand inequality of (6.14) follows from
gl(ah) = ffi(“h) = 3)1(“) Vu,e Ky,

where u, and u are the f.e. approximation and the solution of the primary problem
(1.6), respectively.
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Finally, (6.10), (6.11), (6.16) and (3.1) lead to the inequality
lulf = —22(u) = 22,(2°) = 21(¢") + | /s =

2
> Il + ldiv e

i=1

Il

5+ 2(f, div q")y + ||f]|5 = F(q").

The second assertion follows from the first by virtue of (6.15).
Q.E.D,

Remark 6.3. Similar comments are valid for the practical use of (6.14) as for
(6.13). The right-hand side F(q¢"") can be calculated on the basis of a method of
feasible directions.

Let us derive an a posteriori estimate of error for the finite element approxima-
tions to the dual problem (3.1). The solution 2° of the dual problem (1.11) satisfies
the inequality

M

(A4 =220 Viewu,.

il

i=1

Therefore we may write
(6.17) 20,0) -6 = (Al - 1721 2
2 3 TIAR — (24001 = 3 [0k 4= 200 -

3
— (B2 = Ao + (40, 4 = 2] 2 X |
i=1

From (6.10) we deduce
—F(2°) = Z,(u) £ £,(@,) Vi,eK,,.
Substituting the vector 2" = [q}, 45, f + div ¢"] for 2 € %, we obtain
3
%'Zl ”}'z - ;:)“(2) é ag)l(ﬁh) + yl(lh) = %E(qh, ﬁh)

like in the proof of Theorem 6.1. Thus we come to the following .

Remark 6.4. Let ii,, q" and E(q", @,) be the same as in Theorem 6.1. Then it holds

(6.18) Z;”” - A7

o = D(q", )

for 2* = [4, 44, f + div ¢"].
The situation with the Problem #, is slightly more complicated, as far as the
duality is concerned.
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First, an anlogue of (6.2) is true, i.e.,
(6.19) 2A%,5(v) — Z,(u)] = |v - uf] Vvek,,

where u is the solution of (1.7).
To derive a corresponding saddle point theorem, we introduce the following
subspace of H'/*(T,):

Hy*(r,) = {s|se H'*(r,), 30 € H'*(T), o, = 0, o, = :

]
——

v

We define the linear functionals ¢ € [H/*(I",)] and say that ¢|,, = 0 if

v

{p, s) 20 VseHy*(I,), s=0.

There exists a A e [Hg/*(I',)]', 4|, = 0 such that
(6.20) Lo(u) — (uyu) £ Lo(u) — (Ayu)y £ Ly(v) — (4 o)

holds for all e [Hy*(I,)], y|r, = 0 and all ve H'(Q), y|r, = 0. The latter asser-
tion can be proved on the basis of the Corollary of Hahn-Banach Theorem (see the
proof of Lemma 1.1).

Denote H 7 '/*(I,) the set of all admissible y in (6.20) and V the set of admissible v.
Then it holds
(6.21) Ly(u) = Max  Min[Z,(v) — 4, )] .

ueH + ~1/2(I'y) veV
The minimum problem corresponds with the following mixed boundary value
problem
—Au=f in Q, “|r., =0, Gu/@vlraz .

Denoting u,, the solution of the latter problem, we may use the dual approach with
the complementary energy &,(4) (cf.[3]) to obtain from (6.21) that

(6.22) Ly(u) = Max  ZL,(u,) = Max (=F,(4(u,)) =
el + = 1/2(Ia) n
= — Min Min%,(%) = — Min%,(2) = —,(2°),
n sedAg 4 7€ 3
where
Ap, = {/leQ’div). +f =0, 2.y, =pu},
so that
Ap, =,
neH 4 ~1/2(Iy)
Obviously, we have
(6.23) F(2°) £F(2) Vie,.
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Unfortunately, the f.e. approximations q"e K, (cf. (4.5)) are such that ' =
=1+ q"¢%,, in general. The condition 1 + q" € %, is satisfied, if Z.ve P(S;)
for eachside S, = I',of 7,. Theng = —J1.v = g,.

Remark 6.5. To obtain f.e. approximations A" e %, in general, we can attempt
to find A7 e Q such that

(6.24) divi/ +f=0, ¥ ., =0.
Then replacing 1 by 7/, we obtain g = =27 .v =0 = g, on I',, ¢(2') = 0 for all
j > py (cf. (4.8) and the definition of Z) and 2" = /) + q" e %,.

There is an approach for the search of /. To any we HZ(Q) the vector 4”2 =
= {—0w[ox,, dw[ox,} satisfies the equation div A? = 0. Consequently, if we find
w e H*(Q) such that the trace of w satisfies

(6.25) wfs) = _f(;t.v)(t)df Vser,,

we obtain
dw cw Jw . -
— = - Vit ——v, =" v=—4.v on [,
ds 0x, 0x4

Therefore 2/ = 1 + 2 satisfies (6.24).

Theorem 6.3. Let i, € K,,, be an approximation to the primary problem (1.7) and
am =7 4+ q"meu, (or '+ q"™ e, — see Remark 6.5) an approximation to the
dual problem (1.12). Then

(6.26)  |u — i,|i < Z [ — odylox,|§ + 2f A vi,ds = E(M™ a1, .
. i=1 Iy

Proofis analogous to that of Theorem 6.1. It follows from (6.19), (6.22) and (6.23 .

hm

Remark 6.6. All terms in the right-hand side of (6.26) are non-negative. For q
we may substitute any iteration q(ﬂ"') calculated by e.g. a method of feasible direction
[9] but not by the Uzawa’s algorithm, as the latter may fail to keep " in the set 4.

Theorem 6.4. Let i, and A" be the same as in Theorem 6.3 and Remark 6.6.
Then it holds

= 225(i,) < [uft £ 27,0'7) = Z

1hm’|
'1 10 »

=22,(0,) = (fru)o = Z“’hml .

The proof is analogous to that of Theorem 6.2.

Remark 6.7. Let @, "™, E(A"", ii,) be the same as in Theorem 6.3. Then it holds
(cf. Remark 6.4)

2
¥ |4 - 2013 = B ).
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Remark. Some results presented above can be employed in the dual finite element
analysis of the unilateral problems with obstacles on the boundary [10].
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Souhrn

DUALNI ANALYZA JEDNOSTRANNYCH OKRAJOVYCH ULOH
METODOU KONECNYCH PRVKU

Ivan HLAVACEK

Dudlni variacni formulace okrajovych uloh — principy minima potencidlni resp.
dopliikové energie — jsou rozsifeny na okrajové ulohy s nerovnostmi tzv. Signori-
niho typu na hranici. Pomoci teorie sedlového bodu je dokdzdna souvislost obou
variacnich probléma. Jsou odvozeny algoritmy pro piibliZné feseni obou tloh metodou
koneénych prvki na triangulaci dané oblasti s po Castech linedrnimi polynomy, ddle
apriorni 1 aposteriorni odhady chyb a oboustranné odhady energie. K apriornim
odhadiim se pouzivd tzv. jednostrannych aproximaci feSeni resp. jeho toku na hranici,
za predpokladu jisté regularity fesSeni.
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