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SVAZEK 19 (1974) A P LI K A C E M ATE M A T I K Y ČÍSLO 4 

INHOMOGENEOUS BOUNDARY VALUE PROBLEMS 
FOR THE VON KARMAN EQUATIONS, I 

IVAN HLAVACEK and JOACHIM NAUMANNX) 

(Received September 6, 1973) 

1. INTRODUCTION 

The present paper deals with the existence of a solution for the von Karman 
equations governing the equilibrium of a thin elastic plate, which is subjected to 
combined perpendicular and edge loading. The boundary conditions under con­
sideration correspond with a plate whose edge is partially clamped, supported and 
elastically clamped, and partially subjected to a transversal loading and a moment 
distribution, being also elastically supported and clamped. Moreover, the boundary 
is permitted to have corners. 

In Part I we consider only configurations of boundary conditions such that any 
motion of the rigid plate, the elastic clampings and supports of which become also 
rigid, is eliminated. In the case of a plate which is loaded by tension forces in its 
plane, we prove the existence of a solution to the "full" problem, i.e., for any magni­
tude of loads. In the remaining cases however, we are forced to restrict the com­
pressive forces to sufficiently small magnitudes. Moreover, for sufficiently small 
perpendicular and edge loading, we prove the uniqueness of the solution. 

Our approach consists in restating the boundary value problem considered as 
a system of integral identities in suitably chosen Hilbert function spaces. These 
integral identities admit an equivalent operator formulation to which recent abstract 
existence results for solutions of nonlinear operator equations apply. 

In [1], Berger and Fife have proved the existence of buckled states of a thin 
elastic plate subjected only to compressive forces. Related studies for a thin elastic 
shallow shell are carried out by Naumann [10]2). A global existence theorem for the 
von Karman equations of a plate which is subjected to a combined perpendicular 

1 ( The paper was written during the stay of the second named author at the Department 
of Mathematics, Charles University, Prague. 

2 ) Note that in [10] the case of compression is included in an inequality of the type of Condi­
tion ( + ) (cf. Remark 4.3) but with the opposite sign. 
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and edge loading and clamped along the whole boundary, has been established 
by Knightly [6]. In this paper, no restrictions upon the magnitude of the compressive 
forces are made. Some results estimating the number of solutions for the same 
problem, are presented by Knightly and Sather [7]. The problem of uniform tension 
studied by Fife [3], is included in our discussion as a particular case. Finally, Moro-
zov [8] has considered the von Karman equations under certain homogeneous 
boundary conditions which belong also to the class of our boundary conditions. 

The existence of a solution for the von Karman equations of a thin elastic plate, 
the edge of which is completely free of forces and supports (and the rigid plate 
motions are admitted), has been proved by Naumann [9] . A more general systematic 
treatment of this type of edge conditions will be presented in Part II of our paper. 

Section 2 contains the formulation of the boundary value problem investigated. 
Moreover, a short discussion of the mechanical meaning of the boundary conditions 
is given. The following Section 3 is devoted to some preliminaries and the definition 
of the notion of a variational solution of our boundary value problem. The structure 
of the equations enables us to reduce the inhomogeneous boundary conditions upon 
the stress function into homogeneous ones. This is carried out in Section 4 where 
our main result is also presented. Section 5 contains its proof and a corollary con­
cerning the uniqueness of the solution. 

2. SETTING OF THE BOUNDARY VALUE PROBLEM 

Let Q be a bounded, simply connected domain in the x, j-plane, representing 
the shape of the plate. Throughout the paper we assume that each point (x, y) of the 
boundary F of Q can be represented in the form x = x(s), y = y(s) where the functions 
x(s), y(s) are continuous and piecewise three-times continuously differentiable (here 
s denotes the arc length). Thus, we can write 

i 
F = (J Sj (1 = / < oo) 

i = i 

where each Sj is a smooth simple arc, and the angles of the tangents at the corners 
(if any) between the adjacent arcs are positive1). 

We consider a thin elastic plate (whose midsurface is identified with Q) which 
is subjected both to a perpendicular load q and to forces acting along F. Then equi­
librium states of the plate are characterized as solutions of the following system 
of equations: 

(2.1) A2w = [# , w] + q in Q , 

(2.2) A2<f> = ~[w,w] in Q 

1) The conditions imposed upon F enable us to apply the results of [5]. On the other hand, 
these conditions include the important cases of rectangular and polygonal domains. 
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(the equations (2.1), (2.2) are usually called the von Karman equations of a thin 
elastic plate). Here w = w(x, y) represents the deflection of the plate while <P = 
= #(x, y) is the Airy stress function. A2 is the biharmonic operator, and 

[w, v] = uxxvyy + uyyvxx - 2uxyvxy . 

In order to specify the boundary conditions for (2A), (2.2), let F consist o( three 
mutually disjoint parts Ff, 

F = F, u F2 u F3 

where each F{ (i = 1, 2, 3) is either empty or possesses a positive measure (length) 

and does not contain isolated points2). Moreover, we assume that mes(r2 u F3) > 03). 

We shall consider the following boundary conditions: 

(2.3) w = wn = 0 on Fj , 

w = 0 , M(w) + k2w,, = m2 on F2 , 

M(w) = k31wn = m3 , T(w) + k32w = t3 on T3 , 

where 

dw 
W = 

dn 

M(w) = p Aw + (1 - //) (wXJCn2 + 2w^njcny + wyyn
2) , 

T(w) = - — Aw + (1 - /i) —- [wXJCnxny - wx/n,2 - n2) - wyvnxny] + 
On OS 

+ Xwx + Yw>t, 

n = (nx, ny) being the unit outward normal with respect to Q, p = const (0 < p < | ) 
is the Poisson ratio of the plate material and m2, m3, t3, X, Yare prescribed functions 
(cf. (3.2), (3.3), (3.4) below). 

The functions k2, k3j- (j = 1, 2) satisfy the following conditions: 

(2.3') k^GL^T,)1), k2 ^ 0 a.e. on F2 , 

(23") k31eL>(F3), k32eL\r,), 

k3j ^ 0 a.e. on F3 (j = V 2) 

where 1 < p < co. 

*) Here we do not give the definition of the spaces LP(T) (1 < p < oo). For details we refer 
to the book [11]. 

2) With respect to our approach we cannot consider boundary conditions at isolated points. 
3) For the case T2 U T3 = 0 we refer to Knightly [6l. 
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In the presence of corners (x(s,), y(st)), i = l , . . . , r ( r ^ l) in the interior of I3, 
(2.3) have to be completed by the conditions 

(2.4) H(w(st), n(st)) - H(w(s7), n(s7)) = /,,., i=\,...,r 

where we have set 

X(st) = lim x(s), X(s7) = l i m x(s) 
s-*s, + 0 s~+Si — 0 

for any piecewise continuous function x = x(s)> 

H(w, n) = (1 - fi) [wxxnxny - wx>,(rc
2 - n2

y) - w w n x n j 

while ht (i = 1, ..., r) are prescribed constants. 

In the present Part I of our paper we consider (2.3) under the assumption that 
at least one of the following five conditions holds: 

1° mes (Fx) > 0; 

2° mes (F2) > 0, and F2 is not a segment of a straight line; 

3° there exists a subset F2 c F2 such that: 

a) F2 is a segment of a straight line, 

b) $r2, k2 As > 0; 

4° there exists a subset F3 cz F3 such that: 

a) mes (F3) > 0, 

b) F3 is not a segment of a straight line, 
c) ^32 > 0 a.e. on F3; 

5° there exists a subset F3 cz F3 such that: 

a) F3 is a segment of a straight line, 

b) ^3 2 > 0 a - e - 0 I 1 -^35 

c) either J r 3 k31 sin2 (n, t) d;> > 0 (where t denotes the direction of F3) or: 
F2 is a segment of a straight line which does not coincide with the straight 
line containing F3, and k2 = 0 a.e. on F2. 

Let us briefly explain the mechanical sense of the boundary conditions above. 
According to (2.3) the plate is clamped along F1? supported and elastically clamped 
(if k2 > 0) on F2 or loaded only by a moment distribution (if k2 = 0). In particular, 
it is simply supported on F2 if k2 = m2 = 0. On F3 elastic supports (if k32 > 0) 
and elastic clamping (if k31 > 0) or a transversal load and a moment distribution 
only (if k31 = 0 and k32 = 0, respectively) are prescribed. 

The inequalities in (2.3'), (2.3") are based on the fact that the deformation energy 
of elastic supports cannot be negative. 
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At the corners lying inside F3, the jumps of the twisting moment are given according 
to (2.4). 

The conditions 1° — 5° guarantee that if the elastic bending energy of the plate 
and of the elastic clamping and supports vanish (i.e. if the plate and the supports 
become "rigid"), and if the geometrical boundary conditions are satisfied, then the 
plate cannot move in the direction of w. 

Finally, we impose the following boundary conditions upon <P: 

(2.5) <P = cp0, cpn = cpx on r, 

(2.5') <Pyynx - <Pxyny = X , <Pxxny - <Pxynx = Y on F3 , 

where (p0, (px, X, Yare given functions (cf. (3.4), (4.1) below). 
Note that <p0, <pv depend on X, Y(if F3 + 0). In fact, let X(s), Y(s) be the lateral 

tractions acting along the boundary F in the x- and y-direction, respectively. The 
midsurface stresses ax, ay, r can be expressed by means of the stress function <P: 

(JX = Dk'^yy , (Ty = D^^ ^ , , , T = ~ D^ ^ O xy 

where h is the (constant) thickness of the plate and D is the cylindrical rigidity, 

Eh3 

D = (E = Young's modulus) . 
12(1 -V2) ^ } 

The lateral tractions equal to 

X = h((jxnx + Tny), Y = h(Tnx + (Jyny) on F . 

Observing (2.5') we get 

D'X = X = — <Py, D~1Y= Y= - —$x . 
ds ds 

Thus, 

(2.6) <P = A + Bx + Cy + dt \ny \Ydu + nx X du 
J o L J o J o . 

<1>n = Bnx + Cny - nx Ydu + ny \ X du 
Jo Jo 

where A, B, C are arbitrary constants. 
Thus on the whole F the given (reduced) tractions X and Ywill be transformed 

into <p0, (pt according to (2.6). Besides, on F3 we have to prescribe also X and Y 
directly by means of (2.5;). 

All assumptions formulated above are assumed to be satisfied throughout the 
present paper. The system (2.1), (2.2) with the boundary conditions (2.3), (2.4) and 
(2.5), (2.5') will be referred to as boundary value problem I. 
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3. DEFINITIONS. PRELIMINARIES 

We denote by LP(Q) (l = p < oo) the space of all real functions which are integrable 

with power p on Q (with respect to the Lebesgue measure dx dy). 

Using the notation 

o^ , , 
D* = , a = a, + a2 , 

dxai dy"2 ! ! 

we define for any integer m _ 1 

Wm'p(Q) = {u | it e LP(Q\ D*u e LP(Q) for |a| ^ m] 

where the derivatives are to be understood in the sense of distributions. Wm,p(Q) 
is a Banach space with respect to the norm 

\Wm>P(Q) \u\póxáy + Y 
I a | = m 

\Dau\p dxdx 
ІP 

In particular, the scalar product 

(u, v)W2,2(Q) = uv dx dy + ^ Dau Davdxdy 

turns W12(Q) into a Hilbert space. 

R e m a r k 3.1. It is easy to see that our assumptions on the boundary F imply 

that F is Lipschitzian (see [11] for details). Thus the imbedding and trace theorems 

for the spaces Wm>p(Q) hold. 

Let C°°(Q) denote the space of all infinitely continuously differentiable functions 

in Q which together with all their derivatives can be continuously extended onto Q, 

We then set 

iT = {u | u e C°°(:Q), u = un = 0 on rl9 u = 0 on F2} , 

and define 

V = closure of iT in W2'2(Q) . 

Obviously, Vis a Hilbert space with respect to the scalar product (.,.)w-.2(«)- Note 
that in the case Fx u F2 = 0 we have iT = C°°(Q) and V= W2>2(Q) (see [11]). 
Sobolev's Imbedding Theorem and the trace theorem imply, for any u e V, 

u = 0 pointwise on Fx u F2 , 

u„ = 0 in the trace sense on Fx 

( ^ [11]). 
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For our discussion below it is convenient to introduce another scalar product 
on V. To this end, we define for u, v e W2,2(Q) the bilinear forms 

A(; 

and 

u, v) = [uxxvxx + 2(1 - n) uxyvxy + uyyvyy + n(uxxvyy + uyyvxx)] dx dy 
J# 

O(w, v) = k2unvn ds + k31wnvnds+ k32uvds. 
J T2 J L3 J T3 

By virtue of the trace theorem and Sobolev's Imbedding Theorem (see [11]), the 
boundary integrals above exist so that a(u, v) makes sense for the functions u, v 
under consideration. 

Observing the conditions 1° — 5° (Section 2) it is readily seen that, for any u e V, 
A(u, U) + a(u, u) = 0 implies u = 0. 

Lemma 3.1. There exist positive constants c{, c2 such that 

(Q) (3 .1) 6 i | | w | | W 2 . 2 ( ň ) = A(u> u ) + a(u> u ) = ^^II^IW2.2 

holds for all u e V. 

Proof. The first inequality in (3.1) follows immediately from [4; Theorem 2 + ] . 
Using the estimates 

k2u„ ds ^ const | k 2 |LP(r2) ||W||W2.2(^) » 
T2 

k31u
2ds = const ||k3i||LP(T3) H|IV-.-(fl)> 

J r3 

k32u
2 ds = ||k32||Li(T3) (max |u(s)|)2

 = 

JT3 
= const ||k32||Li(T3) ||w|W2.2(r3) ? 

the second inequality in (3.1) is easily seen. 
Thus, setting 

(u, v)v = A(u, V) + a(u, v) 

for u, v eV, Lemma 3A implies that V with the scalar product (., .)v forms a Hilbert 
space. Henceforth, Vwill be understood as provided with this scalar product. 

We denote by C™(Q) the space of all real infinitely difterentiable functions having 
their support in Q. Let W0

2,2(Q) be the closure of C?(Q) in W2,2(Q). Setting 

(u, v)Wo2,2iQ) = (uxxvxx + 2uxyvxy + uyyvyy) dx dy 
J Q 

for u, v G W22(Q), the norms || | | f F2> 2 (^ ) and || Uwv^.o) = (^-)wo2-HQ) a r e equivalent 
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on W0

2,2(Q). Thus, in what follows, we consider W0'
2(Q) as provided with the scalar 

product (.,.V02,2(fl)s and we get 

W2<2(Q) c K c W2,2(Q) 

where each injection is continuous. 
In order to characterize the right hand sides q (see equation (2.1)) we denote 

by [C(£>)]' the dual space of C(Q) (the space of functions which are continuous in Q 
and have continuous extensions onto Q), and by <m, cp} the dual pairing between 
m e [C(2)] ' and cp e C(Q). Taking q in [C(:Q)]', as right hand side any (Radon) 
measure is admitted. 

We briefly discuss some particular cases for q which are included in our treatment 
of boundary value problem I. First, let Q0 be a measurable subset of Q, and let 
q e L 1 ^ ) . Identifying q with the measure 

q(x, y) (p(x, y) dx dy 

we get 

<g, <P> = <l(x, y) <p(x9 y) dx dy . 
J Qo 

The function q describes a load distribution on Q0. The same argument applies 
to the measure 

ę -> q(s) ę(s) ds 

where 7 is a (rectificable) curve in Q, and q e L}(y). Here q represents a load distribu­
tion along y. Further, setting q = (x5(x0iyo) where S(xo>yo) is the Dirac measure at the 
point (x0, y0) e Q (a = const), q may be interpreted as a concentrated load at the 
single point (x0, y0). 

Finally, we impose the following conditions upon the boundary data in (2.3), (2.5'): 

(3.2) m2єИ(Г2), 

(3.3) m3єlf(Г3), t3єÜ(Г3), 

(3.4) X.YєlҢГз) 

where 1 < p < 00. 

Setting 

B((p, ll/;t)= [((Pxy^y ~~ (Pyy^x) tx + (Vxytx ~~ Vxx^y) Q ^ d y 1 ) 

for cp, \j/, £ e W2,2(.Q), we give the 

1) Note that the existence of the integral under consideration is easily verified by the aid 
of Sobolev's Imbedding Theorem (see also the proof of Proposition 5A below). 
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s + 

Definition 3.1. The pair w, <P is called a variational solution of boundary value 
problem I if: 

1° weV, 
2° <Pe W2/2(Q); 0 = <p0, &n = cp, on T1), 
3° the identity 

(3.5) A(w, <p) + O(w, (p) = B(<P, W; C/>) + m2(pn ds + m3(pn d* 
J T2 J T3 

+ t3cp ds + X ht cp(x(si), y(sv)) + <q, </>> 
JT3 «"=l 

holds for all q> e V, 
4° the identity 

(3.6) (<!>, \l/)Wo2,2{Q) = -B (w, w; ^) 

hOldsfOr alli//eW0
2'2(.Q). 

R e m a r k 3.2. The integral identities (3.5), (3.6) can be obtained formally, multi­
plying (2.1) and (2.2) by the test functions </> and \j/, respectively, integrating by parts 
and making use of the boundary conditions (2.3), (2.4), (2.5'). 

R e m a r k 3.3. In the present paper we do not discuss the sense in which the equa­
tions (2.1), (2.2) and the boundary conditions (2.3) are satisfied by a variational 
solution. This will be done elsewhere. 

4. REFORMULATION. STATEMENT OF THE MAIN RESULT 

In this section we give a modified definition of the notion of a variational solution 
of boundary value problem I. Based on this modification we are able to apply abstract 
operator methods for proving the existence of a solution of boundary value problem I. 

We impose the following conditions upon the data cp0 and (p1: 

(4.1) n ^ 3 / 2 ' 2 ( S y ) , cp^W^Sj) (./=!,...,/), 

<p0eWl'2(r), 

« ,„ . - . - n ^ + n^.eW^ir), 
as 

<Pl0 = , I , ^ + „^ 1e^ 2(T) . 2) 
ds 

1) The trace equalities make sense if we suppose <p0 e W1,r(T), q>i e Lr(T( (1 ^ r < oo). 
However, for the proof of the existence of a variational solution we have to sharpen these condi­
tions (cf. (4.1) below). 

2) Since the spaces Wa?2(T( (a real( and their properties are not explicitely used in the sequel, 
we dipense with their definition. For details we refer to the book [11]. 
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Then there exists a function g e W2'2(Q) such that 

(4.2) g = (p0 , gn = <Pi i n t n e t r a c e sense on F , 

||g||W2,2(fi) ^ const T^cpo, (pi) 
where 

z 
^ l ( ^ 0 ' <Pl) = E [ |ko| |W3/2.2 ( 5 < / ) + | |<Pl||lF-'-.-(Sj)] + | [ ( ? ) 0l | |W l l2,2 ( r ) + | ]^lo | |W l /2 ,2 (r) 

1=1 

(see [5]). 

R e m a r k 4.1. If F is sufficiently smooth (e.g. if Q e 9 l ( 2 M *), which in particular 
means the absence of corners on F) then (4.1) reduces to 

(4.1') <p0eWil2-\r), VteW1'2'2^). 

Then, analogously to the above, there exists a g e W2,2(Q) such that 

(4.2') g = cp0 , gn = <px in the trace sense on F, 

||g||W2,2(f?) ^ COnSt \\(p0 II ^3/2,2(r) 4- ||<Pl||fYl'2.2(r)] 

(see [11]). 

R e m a r k 4.2. If cp0 = cpx = 0 on F, the reformulation carried out below becomes 
superfluous, and in this case the boundary F is required to be only Lipschitzian. 
Moreover, the case of an only Lipschitzian boundary can be handled if <p0, cp1 

in (2.5) are given a-priori as traces of a function in W2,2(Q). Then, by the trace 
theorem, cp0 e Wl,q(F), cpi e Lq(F) for 1 ^ q < oo. 

Proposition 4.1. Suppose (4.1) (or (4.1')) is satisfied. Then there exists a unique 
function F e IV2'2(,Q) such that: 

1. F - geW2,2(Q), 

2. (F, \l/)Wo2,2(Q) = 0 holds for all xjj e W0
2,2(Q). 

Moreover, it holds the estimate 

(4.3) UFII^^fi) = const ||^||jr2,2(fl) . 

The p roo f of Proposition 4A is readily obtained from [11]. The estimate in (4.2) 
(or (4.2')) and (4.3) yield 

(4.4) l ^ lk - . -w = c o n s t r-0Po> <Pi) • 

R e m a r k 4.3. The function F represents the Airy stress function of the associated 
linear plane stress problem. 

l) See [11] for the definition of the class SttS2)'1. 
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One can state the following condition upon F: 

( + ) [{FxyUy - FyyUx) ^x + (Fxy^x ~ F xx^y) " J <** d y -5 0 for all U £ V. 
J:Q 

It is easy to see that ( + ) is satisfied in the case of a "unilateral" tension, i.e., if 

Fxx = Fxy = 0 , Fyy > 0 a.e. in Q , 

or in the case of a "bilateral" tension, i.e., if 

Fxxm
2 + Fyym

2
x — 2Fxymxmy g: 0 a.e. in iQ 

for any unit vector m = (mx, /r/J7) 

(cf. Naumann [10] for the case of compression). Note that the uniform tension 
studied by Fife [3] (F3 = 0) corresponds with Fxx = Fyy = const > 0, Fxy = 0. 

We set <P = F + / whe re / e W^2(Q). Clearly, <£ satisfies the boundary conditions 
(2.5), and it remains to determine the function/ 

Assuming (4.1) (or (4.1')), Definition 3.1 now takes the following form. 

Definition 3.1'. The pair w, / is called an excess variational solution of boundary 
value problem 1 if: 

1° weV, fe W2'2(Q), 

2° the identity 

(4.5) A(w, cp) + a(w, (p) = B(F, w; cp) + J5(/, w; cp) + 

+ m2<r\. ds + m3<Pn ds + r3(jp ds + 
J T2 J r3 J r3 

r 

+ I ^ <p{x{s), y(s,-)) + <<7, (?) 
/ = t 

holds for all <p eV(F according to Proposition 4.1), 

3° the identity 

(4.6) ( / ^ W . a ( » ) = -B(w,w;iA) 

holds for all \j/e Wo'2(Q). 

If the pair w, / is an excess variational solution of boundary value problem I, 
the pair w, <£>, in which <P = F + / (F according to Proposition 4.1), satisfies Defi­
nition 3.V thus representing a variational solution of boundary value problem I. 

The following theorem presents the main result oi' our paper. 

Theorem. Suppose the data m2 and JH3, f3 satisfy (3.2) and (3.3), respectively, 
and the right hand side q is in \C(Q)\> Further, let the data <p0, cpx and K, Ysatisfy 
(4.1) (or (4.T)) and (3.4), respectively. 
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Moreover, let the Condition ( + ) hold, or T^(cp0,cpx) be sufficiently small}). 
Then boundary value problem 1 possesses at least one excess variational solution. 

5. PROOF OF THE THEOREM 

We begin with the equivalent operator formulation of the variational setting 
of boundary value problem I. 

Proposition 5.1.2) The integral identities (4.5), (4.6) are equivalent to the system 
of operator equations 

(5.1) w = Lw + Q ( f vv) + 4* in V, 

(5.2) f = C2(w, vv) in W2,2(Q) 

in which weV, fe W0
2-2(Q). 

Here Cx is a bilinear mapping W0
,2(Q) X V-> V, and L a linear mapping 

V-> V; q* is a fixed element in V Further, C2 is a bilinear mapping Vx V—• 
- WZ2{Q). 

Proof. We first consider the identity (4.5). 
Turning to the form B(F, u; cp), let u e V be arbitrary. By Sobolev's Imbedding 

Theorem (see [11] and Holder's inequality, one gets, for any cp e V, 

Fxyiiycpx áx áy 
xy"y 

Q 

= (const HFL-2,2^) ||w|Li,4(í2)) \\<p\\v3) 

(note that (3.1) is used). Obviously, the same argument applies to the remaining 
integrals in B(F, u; cp). Thus, the estimate 

(5.3) |B(F, u; cp)\ ^ (const ||F||^2,2(fi) ||u||^i,4(^) \\cp\\v 

holds for all cp eV. By Riesz representation theorem for linear functionals., there 
exists a (uniquely determined) element Lu GVsuch that 

(5.4) (Lu, cp)v = B(F, u; cp) for all cpeV. 

Let v e W0
,2(Q), U EV. Proceeding as above, the estimate 

(5.5) \B(v, U; cp)\ ^ (const ||v||^02,2(fi) | | M | | ^ . W \<P\V 

J) We do not give the numerical value of the bound restricting Tx((p0, q>{) since it involves 
the constant in (4.4). 

2) Without particularly referring to it, the assumptions of our Theorem are assumed to be 
satisfied in deriving of all auxiliary material needed. 

3) i;u;|y= (u,u)V2, ueV. 
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is readily verified for any cp e V so that we can conclude the existence of a unique 
Cx(v, u) e V such that 

(5.6) (Ci(^ w), (p)v = B(v, U; cp) for all cp e V. 

Using again the trace theorem and Sobolev's Imbedding Theorem, we get for the 
remaining terms in (4.5) the estimate 

(5.7) 
T2 

< m2cpn ds + m3cpn ds + t3cp ds + £ ht <p(x(st), y(st)) + <D, cp} 
JT3 JT3 i==1 

g constK(m2; m3; t3; h1? ..., hr; q) \\(p\\v 

where we have denoted 

K(m2; m3; t3; hl9 ..., fcr; g) == | |m2 |L P ( r 2 ) + ||m3||L„(r3) + 

+ ||̂ ||LUT3) + Z N + Ikllcccn)]'. 
i = 1 

Thus, there exists a unique element g* e Vsuch that 

(5.8) (q*, cp)v = m2<pB ds + m3<pB ds + t3<p ds + 
J T2 J T3 J T3 

r 

+ Z hi <p(x(sd> y(si)) + <^ <?> 
i = l 

for all <p e V 
Observing now the defining relations (5.4), (5.6), (5.8), the equivalence of the 

identity (4.5) to the operator equation (5A) is readily seen. 
Passing to the identity (4.6), let u, u e V be arbitrary. Arguing as above, we get, 

for any \p e WQ'2(Q), 

I uxu\jjx áx áy 
xў 

Q 

= (const | | M | F ||u||iri.4(f l)) ||^||W0

2.2a2) 

Hence, 

(5.9) \B(u, U; xj/)\ ^ (const \\u\\v \\u\\wi>4(Q)) ||^||^0

2.2(r?) 

for all \j/ e W0

2'2(.Q) which implies the existence of a unique element C2(w, ti) e W0

2'2(.Q) 
such that 

(5.10) (C2(u, u), \I/)WQ2,HQ) = -B(u, u; xj/) for all \j/ e W0'
2(.Q) . 

By (5.10), the equivalence of (4.6) to (5.2) is obvious. 

P r o o f of t h e T h e o r e m c o m p l e t e d . We introduce the (nonlinear) mapping 
C : V -> V, defined as follows 

(5.11) C(u) = -Lu - Ci(C2(w, w), u) , ueV. 
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The system of operator equations (5.1), (5.2) is equivalent to the (single) equation 

(*) u + C(u) = q* in V. 

In fact, if the pair w , / i s a solution of (5A), (5.2), by substitution, u = w is a solu­
tion of (*). Conversely, if u satisfies (*), the pair w, / in which w = u, f = C2(w, w), 
is a solution of (5.1), (5.2). Thus, by Proposition 5A, our Theorem will be proved 
if we establish the existence of a solution of (*). 

To this end we use the following abstract theorem (see e.g. [2]): 
Let H be a (separable) Hilbert space (with the scalar product ( , ) and the norm 
|| = ( , )1 /2), and let C be a completely continuous1) mapping of H into H, 

Moreover, let 

y ((I+C)u,u) 
hm — rr~~ = + oo . 

II «l|-* oo ||u|| 

Then I + C maps H onto H. 

We set H = V and verify the conditions of the abstract theorem above for the 
operator C defined by (5.11). 

a) Complete continuity of C. The estimate 

(5.12) ||L(u — v)\v ^ const 1^1^2,2(0) Iu — t;||TFi,4(D) 

holding for all u, v E V, follows immediately from (5.3). Next, the identity 

B(u, v; \j/) = B(v, u; \j/) 

in which u, v e V, ij/ e WQ,2(Q) are arbitrary, is easily obtained by integration by parts 
(cf. [10]). Hence, 

C2(u, v) = C2(v, u) for all u, v e V. 

Using this symmetry property, we get by virtue of (5.5) and (5.9) 

(5.13) ||Ci(C2(", u), u) - Ci(C2(v, v), v)\v ^ 

S const (||u||£ + \v\v) ||w - ^1^1,4(0) 

for all u, v E V. 
Using Sobolev's Imbedding Theorem and the trace theorem, the continuity of C 

follows from (5.12) -(5.13). 
Let {UJ} be any bounded sequence in V. Since the imbedding W2,2(Q) c WiA(Q) is 

compact(see[ll]), there exists a subsequence {ujn} of {uj} such that ujn -> u strong­
ly in W1A(Q) as n -> oo. By (5A2)-(5A3), C(ujn) -> C(u) strongly in Vas n ~> oo.2) 

x) A mapping of H into H is said to be completely continuous if it is continuous and maps 
each bounded set of H into a compact set. 

2) In fact we have got a slightly stronger property for C than the compactness: If {uf} is any 
sequence lying in a bounded subset of Vthen there exists a subsequence {u; } of {u} and u e V 
such that C(uJn)-> C(u) strongly in F a s « - > o o . 
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b) Coerciveness. Observing assumption (i) we get by virtue of Condition ( + ) 

(Lu, u)v = B(F, u; u) g 0 for all u e V. 

Dispensing with Condition ( + ) we find an ex > 0 such that ||Lu||K S 2"||M||V f ° r 

all u GVand Fi(<p0? ̂ i ) S £1 (cf. (5.3); estimate (4.4) is used). Thus, 

(Lu, u)v g i|w | |V f ° r a-l u eV 

if Condition ( + ) holds, or if Tx((p0, (pt) g et . 

An integration by parts leads to the identity 

B(v, u; cp) — B((p, u; v) 

which is valid for all v e W0'
2(Q), u, cp e V(cf. [10]). With the use of (5.10) we obtain 

(5.15) (Ct(C2(u, u), u), u)v g O for all u e V. 

Gathering (5.14)-(5.15) one gets 

(5.16) ((I + C) M, u)v ^ i\\u\\v for all ueV. 

Taking into account Proposition 5.1, the existence of an excess variational solution 
of boundary value problem I follows by application of the abstract theorem to (*). 

The proof of our Theorem is complete. 

Corollary. Suppose the assumptions of the Theorem are fulfilled. Then: 
(i) Each excess variational solution of the boundary value problem I satisfies 

the estimates 

(5.17) ||w||K g constK(m2; m3; t2; hl9 ..., hr; q) , 

||/||W02,2(D) g const [K(m2; m3; t3; hl9..., hr; q)]2 . 

(ii) For sufficiently small K(m2; m3; t3; hu ..., hr; q), the excess variational 
solution of the boundary value problem I is unique. 

Proof, (i) The estimate (5.16) yields ||M||F g 2||tf*|(F for each solution u of (*). 
By (5.7), 

||M||K S constK(m2; m3; t3; h1, . . . , hr; q) . 

Setting w — u, f — C2(u, u) and using (5.9), the estimates asserted are readily seen, 
(ii) Using (5.12), (5.14) as well as (5.13) one obtains 

||(I + C) u - (I + C) v\\v S [ i - const (\\u\\v + \\v\\v)] \\u - v\\v 

for all u, v e V. This implies that the solution of (*) is unique in a ball with sufficiently 
small radius, centered at the origin. By virtue of (5.17) the assertion (ii) is verified. 

Using (4.4) we get for the stress function $ the estimate 

IHIwV.2^) S const {^((Po, <Pi) + [K(m2; m3; t3; hl9 ..., hr; q)]2} . 
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R e m a r k 5.1. The uniqueness of a variational solution of boundary value problem 
I for large ||w||K remains unsettled. However, results about the bifurcation of non-
trivial solutions in the case of compression (cf. [ l ] , [7], [10]) show that uniqueness 
in general cannot be expected. 

R e m a r k 5.2. A careful analysis of the technique of the proof developed above 
shows that the system 

A2w = [# , Ml] + k±0xx + k2<Pyy + q in Q , 

A2<P = —i[w, w] — k{wxx — k2wyy in Q 

(which describes the equilibrium of a thin elastic shallow shell with curvatures fc1? fc2) 
with the boundary conditions considered above, possesses a variational solution, 
provided the curvatures are sufficiently small. 

R e m a r k 5.3. It is easy to realize that also the boundary conditions 

wn = 0 , T(w) + k4w = t4 on F4 

could be included without difficulties. Conditions of this type will be considered 
in Part II. 
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S o u h r n 

NEHOMOGENNÍ OKRAJOVÉ ÚLOHY PRO KÁRMÁNOVY ROVNICE I. 

IVAN HLAVÁČEK, JOACHIM NAUMANN 

V článku se dokazuje existence řešení okrajové úlohy pružné tenké desky pro 
jistou třídu kombinovaných okrajových podmínek. Deska může být zčásti vetknutá, 
zčásti podepřená a zčásti pružně vetknutá a pružně podepřená nebo volná. Tato 
volná část okraje a část podepřená je obecně zatížena momenty a volná část i po­
souvajícími silami. Na celém okraji desky, který může mít rohy, působí též zatížení 
v rovině desky. Okrajové podmínky pro průhyb vylučují však vždy možnost pohybu 
desky jako tuhého celku kolmo k její rovině. 

Variační formulace problému je převedena na operátorovou rovnicí, pro kterou 
platí abstraktní existenční věta. Řešení existuje, když okrajové zatížení, působící 
v rovině desky, vyvolává v desce tahové namáhání nebo je dostatečně malé. Řešení 
je jediné, když příčné zatížení desky je dostatečně malé. 
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