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INHOMOGENEOUS BOUNDARY VALUE PROBLEMS
FOR THE VON KARMAN EQUATIONS, 1

IVAN HLAVACEK and JoAcHIM NAUMANNY)

(Received September 6, 1973)

1. INTRODUCTION

The present paper deals with the existence of a solution for the von Karman
equations governing the equilibrium of a thin elastic plate, which is subjected to
combined perpendicular and edge loading. The boundary conditions under con-
sideration correspond with a plate whose edge is partially clamped, supported and
elastically clamped, and partially subjected to a transversal loading and a moment
distribution, being also elastically supported and clamped. Moreover, the boundary
is permitted to have corners.

In Part I we consider only configurations of boundary conditions such that any
motion of the rigid plate, the elastic clampings and supports of which become also
rigid, is eliminated. In the case of a plate which is loaded by tension forces in its
plane, we prove the existence of a solution to the “full’”’ problem, i.e., for any magni-
tude of loads. In the remaining cases however, we are forced to restrict the com-
pressive forces to sufficiently small magnitudes. Moreover, for sufficiently small
perpendicular and edge loading, we prove the uniqueness of the solution.

Our approach consists in restating the boundary value problem considered as
-a system of integral identities in suitably chosen Hilbert function spaces. These
integral identities admit an equivalent operator formulation to which recent abstract
existence results for solutions of nonlinear operator equations apply.

In [1], Berger and Fife have proved the existence of buckled states of a thin
elastic plate subjected only to compressive forces. Related studies for a thin elastic
shallow shell are carried out by Naumann [10]?). A global existence theorem for the
von Karman equations of a plate which is subjected to a combined perpendicular

1y The paper was written during the stay of the second named author at the Department
of Mathematics, Charles University, Prague.

2) Note that in [10] the case of compression is included in an inequality of the type of Condi-
tion (4) (cf. Remark 4.3) but with the opposite sign.
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and edge loading and clamped along the whole boundary, has been established
by Knightly [6]. In this paper, no restrictions upon the magnitude of the compressive
forces are made. Some results estimating the number of solutions for the same
problem, are presented by Knightly and Sather [7]. The problem of uniform tension
studied by Fife [3], is included in our discussion as a particular case. Finally, Moro-
zov [8] has considered the von Karman equations under certain homogeneous
boundary conditions which belong also to the class of our boundary conditions.

The existence of a solution for the von Karman equations of a thin elastic plate,
the edge of which is completely free of forces and supports (and the rigid plate
motions are admitted), has been proved by Naumann [9]. A more general systematic
treatment of this type of edge conditions will be presented in Part II of our paper.

Section 2 contains the formulation of the boundary value problem investigated.
Moreover, a short discussion of the mechanical meaning of the boundary conditions
is given. The following Section 3 is devoted to some preliminaries and the definition
of the notion of a variational solution of our boundary value problem. The structure
of the equations enables us to reduce the inhomogeneous boundary conditions upon
the stress function into homogeneous ones. This is carried out in Section 4 where
our main result is also presented. Section 5 contains its proof and a corollary con-
cerning the uniqueness of the solution.

2. SETTING OF THE BOUNDARY VALUE PROBLEM

Let Q be a bounded, simply connected domain in the x, y-plane, representing
the shape of the plate. Throughout the paper we assume that each point (x, y) of the
boundary I of Q can be represented in the form x = x(s), y = y(s) where the functions
x(s), y(s) are continuous and piecewise three-times continuously differentiable (here
s denotes the arc len gth). Thus, we can write

(1=1< )

where each §; is a smooth simple arc, and the angles of the tangents at the corners
(if any) between the adjacent arcs are positive').

We consider a thin elastic plate (whose midsurface is identified with ©) which
is subjected both to a perpendicular load g and to forces acting along I'. Then equi-
librium states of the plate are characterized as solutions of the following system
of equations:

(2.1) Aw =[P, w]+q in Q,
(22) AP = —[w, w] in Q

1) The conditions imposed upon I” enable us to apply the results of [5]. On the other hand,
these conditions include the important cases of rectangular and polygonal domains.
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(the equations (2.1), (2.2) are usually called the von Karman equations of a thin
elastic plate). Here w = w(x, y) represents the deflection of the plate while ® =
= P(x, ) is the Airy stress function. 4? is the biharmonic operator, and

[u, v] = up vy + uy, — 2u0,, .

In order to specify the boundary conditions for (2.1), (2.2), let I' consist of three
mutually disjoint parts I';,
I'=r,vr,ur;,

where each I'; (i = 1,2, 3) is either empty or possesses a positive measure (length)
and does not contain isolated points?). Moreover, we assume that mes(I", U I';) > 0°).

We shall consider the following boundary conditions:

(2.3) w=w, =0 on T,
w=0, M(w) + kow, = m, on TI,,
M(w) = kyyw, = my, T(w) + ky,w =13 on Ig,
where
ow
w, = — ,
on

M(w) = pdw + (1 — p) (Weeni + 2wonn, + wyni),
0 0 2 2 :
T(w) = — —dw + (1 — p) — [wxxnxny —wy(ni —nj) — wyvnxny] +
’ on 0s ’
+ Xw, + Yw,,
n = (n,, n,) being the unit outward normal with respect to @, ;1 = const (0 < u < ¥)
is the Poisson ratio of the plate material and m,, ms, t5, X, Y are prescribed functions
(cf. (3.2), (3.3), (3.4) below).
The functions k,, ks; (j = 1, 2) satisfy the following conditions:

(2.3) kyeIX(I,)'), k,z0 ae on I,,
(2.3") ki, € IX(I's), ki, e LY(I5),
ky;=0 ae on Iy (j=1,2)

where 1 < p < o0.

1y Here we do not give the definition of the spaces LP(I') (1 < p << o). For details we refer
to the book [11].

2) With respect to our approach we cannot consider boundary conditions at isolated points.
3) For the case I', U I's = @ we refer to Knightly [6].
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In the presence of corners (x(s;), ¥(s;)), i = 1,...,r (r £ I) in the interior of I,
(2.3) have to be completed by the conditions

(2.4) H(w(s/ ). n(s;)) — Hw(s7 ). n(s7)) = h;, i=1,..,r
where we have set
ws) = lim x(s), x(s;7) = lim x(s)
s=si+0 s=+s;—0

for any piecewise continuous function y = x(s),
H(w, n) = (1 — p) [weenon, — we(n2 — n}) — wynen,]

while h; (i = 1, ..., r) are prescribed constants.

In the present Part 1 of our paper we consider (2.3) under the assumption that
at least one of the following five conditions holds:

1° mes (I'y) > 0;
2° mes (Fz) > 0, and I, is not a segment of a straight line;

3° there exists a subset I';, < I', such that:
a) I'y is a segment of a straight line,
b) [, kyds > 0;

4° there exists a subset I'y < I'; such that:
a) mes (I';) > 0,
b) I' is not a segment of a straight line,
c) ki, > 0ae. on I}

5° there exists a subset I'; < I'5 such that:
a) I'} is a segment of a straight line,
b) k3, > 0 a.e. on I},
c) either [, ks, sin?(n, t)ds > 0 (where t denotes the direction of I'j) or:
I', is a segment of a straight line which does not coincide with the straight
line containing I';, and k, = O a.e. on I',.

Let us briefly explain the mechanical sense of the boundary conditions above.
According to (2.3) the plate is clamped along I'y, supported and elastically clamped
(if k, > 0) on I', or loaded only by a moment distribution (if k, = 0). In particular,
it is simply supported on I', if k, = m, = 0. On I'; elastic supports (if k3, > 0)
and elastic clamping (if k3; > 0) or a transversal load and a moment distribution
only (if k3; = 0 and ks, = 0, respectively) are prescribed.

The inequalities in (2.3), (2.3") are based on the fact that the deformation energy
of elastic supports cannot be negative.

256



At the corners lying inside I3, the jumps of the twisting moment are given according
to (2.4).

The conditions 1° — 5° guarantee that if the elastic bending energy of the plate
and of the elastic clamping and supports vanish (i.e. if the plate and the supports
become “‘rigid”), and if the geometrical boundary conditions are satisfied, then the
plate cannot move in the direction of w.

Finally, we impose the following boundary conditions upon @:

(2.5) b =q¢,, P, =¢, on I,

(2.5) ®,n

wy'lx xy'ly

- ®.n =X, & . n, — & n.=Yon I,

xx'ty

where ¢,, @, X, Y are given functions (cf. (3.4), (4.1) below).

Note that ¢,, ¢, depend on X, Y (if I'y # ). In fact, let X(s), Y(s) be the lateral
tractions acting along the boundary I' in the x- and y-direction, respectively. The
midsurface stresses ¢, 0,, T can be expressed by means of the stress function ¢:

o, = Dh™'o o,=Dh™'® ., 1= —Dh'®,

yy?

where h 1s the (constant) thickness of the plate and D is the cylindrical rigidity,

Eh? ,
- (E = Young’s modulus) .
12(1 — p2)

The lateral tractions equal to

X = h(on, + 1n,), Y= h(zn, + o) on I.
5"

Observing (2.5") we get
px=-x=Y%9, Dv-v=-Y0,.
ds ds
Thus,
S t T
(2.6) ¢=A+Bx+C)7+J‘dt[nyJYdll+nijdu],
0 0 0

. = Bng + Cn, — n, J‘.Ydu + nyj X du

0 0

S
il

where A4, B, C are arbitrary constants.

Thus on the whole I' the given (reduced) tractions X and Y will be transformed
into @q, ¢, according to (2.6). Besides, on I'; we have to prescribe also X and Y
directly by means of (2.5).

All assumptions formulated above are assumed to be satisfied throughout the
present paper. The system (2.1), (2.2) with the boundary conditions (2.3), (2.4) and
(2.5), (2.5") will be referred to as boundary value problem 1.
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3. DEFINITIONS. PRELIMINARIES

We denote by I7(Q) (1 < p < o) the space of all real functions which are integrable
with power p on Q (with respect to the Lebesgue measure dx dy).

Using the notation

Alal

ok

D= |»
ap Ax «

ox* Oy

=0y + 0y,

we define for any integer m = 1
Wmr(Q) = {u | ue IX(Q). D'ueIX(Q) for |« < m}

where the derivatives are to be understood in the sense of distributions. W™"(Q)
is a Banach space with respect to the norm

~ /
HuHW,,,,,,(Q) = {f Iu”’ dxdy + ) J |D“u Pdx d)}l ’
o o

la| =m

In particular, the scalar product

(1, V)y2,200) = f wwdx dy + ) f D*u D*vdx dy
2

Q la]=2

turns W2-2(Q) into a Hilbert space.

Remark 3.1. It is easy to see that our assumptions on the boundary I' imply
that I' is Lipschitzian (see [11] for details). Thus the imbedding and trace theorems
for the spaces W™”(Q) hold.

Let C*(Q2) denote the space of all infinitely continuously differentiable functions
in Q which together with all their derivatives can be continuously extended onto Q,

We then set
¥ ={ulueC(@).u=u,=0onT,,u=0o0nT,},
and define
V = closure of ¥ in W**(Q).

Obviously, V' is a Hilbert space with respect to the scalar product (... )22 Note
that in the case I, U T, = @ we have ¥ = C*(Q) and V = W>*(Q) (see [11]).
Sobolev’s Imbedding Theorem and the trace theorem imply, for any u € V,

u =0 pointwise on r,ur,,

u, = 0 in the trace sense on I,

(see [11]).
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For our discussion below it is convenient to introduce another scalar product
on V. To this end, we define for u, ve WZ‘Z(Q) the bilinear forms

A(u,v) = j T + 201 = p) vy + uyty, + i, + u,w.)] dxdy
2

and
a(u, v) EJ kyu,v, ds +J ks u,v, ds +J ky,uvds .
I I's Is

By virtue of the trace theorem and Sobolev's Imbedding Theorem (see [11]), the
boundary integrals above exist so that a(u, v) makes sense for the functions u, v
under consideration.

Observing the conditions 1°—5° (Section 2) it is readily seen that, for any u eV,
A(u, u) + a(u, u) = 0 implies u = 0.

Lemma 3.1. There exist positive constants ¢, ¢, such that
(31) Clnunfyz,z(g) é A(l/l, u) + (l(ll, u) é Czilu”fy:,zm,
holds for all ueV.

Proof. The first inequality in (3.1) follows immediately from [4; Theorem 2.1].
Using the estimates

~

A

kyu?ds < const HkZHL"(fz) ”M”fyz,z(g) ,
JI2
ad

2
kyqu, ds

IIA

const Hk“”,_,,(m “u”fyz,z(m )
JTI3

ks u® ds

IIA

Hkn”wr;) (max I“(S)Dz =

const

J I3

IA

lu”%;/Z,Z(Q) 5

k}Z”L‘([‘;)

the second inequality in (3.1) is easily seen.
Thus, setting
(u, v)y = A(u, v) + a(u, v)

for u, v eV, Lemma 3.1 implies that V with the scalar product ( s .)V forms a Hilbert
space. Henceforth, ¥ will be understood as provided with this scalar product.

We denote by CZ() the space of all real infinitely differentiable functions having
their support in Q. Let Wy (Q) be the closure of C2(Q) in W?'*(Q). Setting

(4, V)wor.20) = J‘ (Ve + 200y, + uyw, ) dx dy
2

for u, ve W?*(Q), the norms ” HWZ_Z(Q) and H ”Woz,z(n) = (.,.)W&. 2@ are equivalent
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on Wy *(Q). Thus, in what follows, we consider W7 *(®) as provided with the scalar
product (.,.)y,2.20) and we get

We(Q) c Ve W(Q)

where each injection is continuous.

In order to characterize the right hand sides g (see equation (2.1)) we denote
by [C(Q)]’ the dual space of C(Q) (the space of functions which are continuous in Q
and have continuous extensions onto f_z), and by {(m, ¢) the dual pairing between
me[C(Q)] and ¢ € C(Q). Taking g in [C(Q)]’, as right hand side any (Radon)
measure is admitted.

We briefly discuss some particular cases for ¢ which are included in our treatment
of boundary value problem I. First, let Q, be a measurable subset of @, and let
q € L'(Q,). Identifying g with the measure

® ﬁJ a(x, y) (x, y) dx dy
Qo

we get

{q, 9> = f a(x, ) o(x, y) dxdy .
2o

The function ¢ describes a load distribution on £,. The same argument applies
to the measure

- f a9 o) &

where 7 is a (rectificable) curve in @, and g € L'(y). Here g represents a load distribu-
tion along y. Further, setting ¢ = o0y, .5,) Where 6(x,.y,) is the Dirac measure at the
point (xq, yo) € @ (« = const), g may be interpreted as a concentrated load at the
single point (xo, ¥o).

Finally, we impose the following conditions upon the boundary data in (2.3), (2.5'):

(3.2) my e I(T5),
(3.3) myeI(I5), tsel!(Is),
(3.4) X, Ye IX(I'5)

where 1 < p < oo.
Setting

B((p’ l//a C) = J. [((pxyl/Jy - ¢yy¢x) Cx + ((pxy‘l/x - (pxxlpy) Cy] dx dyl)
Q
for ¢, y, { € W**(Q), we give the

1) Note that the existence of the integral under consideration is easily verified by the aid
of Sobolev’s Imbedding Theorem (see also the proof of Proposition 5.1 below).
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Definition 3.1. The pair w, @ is called a variational solution of bounduary value
problem I if:

1° weV,

2° de WH(Q);, @ = ¢y, D, = @, on I'"),

3° the identity

(3.5 A(w, @) + a(w, @) = B(P, w: @) + f

m, @, ds +J msp, ds +
I I's

+ _[ t3¢ ds 'i‘_zlhi o(x(s:), ¥(s)) + <q, @>
rs i=

holds for all p €V,
4° the identity

(36) ((D, l//)WOZ,l(_Q) = —B(W, w; l//)
holds for all € WOZ‘Z(Q).
Remark 3.2. The integral identities (3.5), (3.6) can be obtained formally, multi-

plying (2.1) and (2.2) by the test functions ¢ and v, respectively, integrating by parts
and making use of the boundary conditions (2.3), (2.4), (2.5").

Remark 3.3. In the present paper we do not discuss the sense in which the equa-
tions (2.1), (2.2) and the boundary conditions (2.3) are satisfied by a variational
solution. This will be done elsewhere.

4. REFORMULATION. STATEMENT OF THE MAIN RESULT

In this section we give a modified definition of the notion of a variational solution
of boundary value problem I. Based on this modification we are able to apply abstract
operator methods for proving the existence of a solution of boundary value problem I.

We impose the following conditions upon the data ¢, and ¢,:

(4.1) Qe WVHXS), @, eWVXS) (i=1,...1),
poe WA(I),

de
(/)01 = - ny Eg + nx(Pl € W1/2.2(1~)’

il

d
Pro = 1, ;”s" + nyp, e WD) 2)

1) The trace equalities make sense if we suppose ¢g € wirr, 9y L) (1 £ r<oo).
However, for the proof of the existence of a variational solution we have to sharpen these condi-
tions (cf. (4.1) below).

2) Since the spaces W% 2(I') (« real) and their properties are not explicitely used in the sequel,
we dipense with their definition. For details we refer to the book [11].
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Then there exists a function g € W**(Q) such that
(4.2) g=¢,., g,= ¢, inthetracesenseonl,
[g] w220y < const Ty(¢o, ¢1)

where

I 1
Ti(po. @,) = _ZI[H<P0“w3/2-2(s,) + H(pIHW“Z-Z(Sj)] + H(/’oxuw1/2,2(r)+ H‘Pmer/Z.Z(r)
=

(see [5]).
Remark 4.1. If I' is sufficiently smooth (e.g. if Qe NH! I), which in particular
means the absence of corners on F) then (4.1) reduces to

(4.1) poe WKL), @, e W/'XI).
Then. analogously to the above, there exists a g € W>?(Q) such that

(42) g=¢0, gs= @, in the tracesenseonl,

Hg“WZAZ(Q) § const [HQDOH W312,2(I) + ”(pl”WUZ.Z(I‘)]

(see [11]).

Remark 4.2. If ¢, = ¢, = 0 on I', the reformulation carried out below becomes
superfluous, and in this case the boundary I' is required to be only Lipschitzian.
Moreover, the case of an only Lipschitzian boundary can be handled if ¢,, ¢,
in (2.5) are given a-priori as traces of a function in W?*(Q). Then, by the trace
theorem, @, € W"(I'), ¢, € LAT') for 1 £ g < oo.

Proposition 4.1. Suppose (4.1) (or (4.1')) is satisfied. Then there exists a unique
function F e W>*(Q) such that:

1. F — geWs?Q),

2. (Fo ) wor2iy = 0 holds for all € Wy 2(Q).
Moreover, it holds the estimate
(4.3) [Fllwe.x@) < const l9lw2a -

The proof of Proposition 4.1 is readily obtained from [11]. The estimate in (4.2)
(or (4.2")) and (4.3) yield
(4.4) |F w220y < const Ti(@o, @1) -

Remark 4.3. The function F represents the Airy stress function of the associated

linear plane stress problem.

1y See [11] for the definition of the class N2t
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One can state the following condition upon F:
(+) J [(Fou, = Fpu)u, + (Fou, — Fouy)u,Jdxdy <0 forall uel.
(2]

It is easy to see that (+) is satisfied in the case of a ““unilateral’” tension, i.e.. if

F,.=F,=0, F >0 ae in Q,

xy

or in the case of a “bilateral” tension, i.e., if

F, mz, + F,m2 —2F, mom, =20 ae. inQ
for any unit vector m = (m,, m,)
(cf. Naumann [10] for the case of compression). Note that the uniform tension
studied by Fife [3] (I'y = @) corresponds with F, = F,, = const > 0, F , = 0.
We set @ = F + f where f e WOZZ(_Q) Clearly, @ satisfies the boundary conditions
(2.5), and it remains to determine the function f.
Assuming (4.1) (or (4.1)), Definition 3.1 now takes the following form.

Definition 3.1'. The pair w, f is called an excess variational solution of boundary
value problem I if:

1°weV, fe Wg*(Q),
2° the identity

(4.5)  A(w, ¢) + a(w, @) = B(F, w; @) + B(f. w; @) +

—Q—J m,e, ds +J mye, ds +J typ ds +
I Is Is

+Zh o(x(s,), v(s0)) + <a. 9>

i=1
holds for all ¢ €V (F according to Proposition 4.1),
3° the identity
(4.6) (fs W)wyr2iey = — B(w, w; )
holds for all yr e W3 *(Q).
If the pair w, f is an excess variational solution of boundary value problem I,
the pair w, @, in which ® = F + f (F according to Proposition 4.1), satisfies Defi-

nition 3.1, thus representing a variational solution of boundary value problem I.
The following theorem presents the main result of our paper.

Theorem. Suppose the data m, and my, ty satisfy (3.2) and (3.3), respectively,

and the right hand side q is in [C(Q)]’. Further, let the data ¢4, ¢, and X, Y satisfy
(4.1) (or (4.1)) and (3.4), respectively.
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Moreover, let the Condition (+) hold, or T,((po,(p,) be sufficiently small.').
Then boundary value problem 1 possesses at least one excess variational solution.

5. PROOF OF THE THEOREM

We begin with the equivalent operator formulation of the variational setting
of boundary value problem I.

Propesition 5.1.%) The integral identities (4.5), (4.6) are equivalent to the system
of operator equations

(5.1) w=Lw+ C(fiw)+4g*inV,
(5.2) f = Cy(w,w) in W53(Q)
in which weV, fe W;*(Q).
Here C, is a bilinear mapping WOZ'Z(Q) x V-V, and L a linear mapping

V- V. g* is a fixed element in V. Further, C, is a bilinear mapping V x V —
- WA(Q).

Proof. We first consider the identity (4.5).
Turning to the form B(F, u; ¢), let u €V be arbitrary. By Sobolev’s Imbedding
Theorem (see [ 11] and Hélder’s inequality, one gets, for any ¢ €V,

U F o0, dx dy} < (const [Fll w220, [u]wi.s0) |@]l)

Q

(note that (3.1) is used). Obviously, the same argument applies to the remaining
integrals in B(F, u; (p). Thus, the estimate

(5.3) |B(F, u; @)| < (const |F|ly2.200, |u]wi@) [@]v

holds for all ¢ eV. By Riesz representation theorem for linear functionals, there
exists a (uniquely determined) element Lu € V such that

(5.4) (Lu, @)y = B(F, u; ) forall gpeV.
Let ¢ € Wy *(Q), u V. Proceeding as above, the estimate

(5.5) |B(, u3 )] = (const [[o]wez.zca [u]wia) 0]

) We do not give the numerical value of the bound restricting Ty(pg, ¢1) since it involves
the constant in (4.4).

2) Without particularly referring to it, the assumptions of our Theorem are assumszd to be
satisfied in deriving of all auxiliary material needed.

3 v = (u, u),l,/z, ue V.
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is readily verified for any ¢ €V so that we can conclude the existence of a unique
C,(v, u) €V such that

(5.6) (Cy(v, u), ¢), = B(v,u; ¢) forall geV.

Using again the trace theorem and Sobolev’s Imbedding Theorem, we get for the
remaining terms in (4.5) the estimate

(5.7)

r
j myp, ds +j msp, ds +j t3p ds + 3 hy o(x(s;), y(s1)) + <q, 0> | £
r s I3 i=1

2

< const K(my; my; t35 hy, .., hys q) oy

where we have denoted

K(my:mys t33 hyy s by ) = |my| woeryy + [ms|ovas) +

+ |13 ey + i;lhi| + [ 4]ecay -

Thus, there exists a unique element g* € V such that

(539) (fwh=j

I

m, o, ds +j

m;@, ds + J typ ds +
rs rs

+ X o(x(s). 3(5)) + <a. 0>

for all p eV.

Observing now the defining relations (5.4), (5.6), (5.8), the equivalence of the
identity (4.5) to the operator equation (5.1) is readily seen. ‘

Passing to the identity (4.6), let u, u € V be arbitrary. Arguing as above, we get,
for any e W5'*(Q),

[ mombcas as | 5 Gcomst [l [hnn) ¥l
e |
Hence,

(5.9) IB(u, it l//)] < (const ||uHV n&”wl_,.(m) “l,[/HWOz,z(Q)

for ally € W3>*(Q) which implies the existence of a unique element C,(u, it) € Wg"*(Q)
such that

(5.10) (Co(u, @), Y)wor2y = —B(u, it; ) forall e Ws*(Q).
By (5.10), the equivalence of (4.6) to (5.2) is obvious.

Proof of the Theorem completed. We introduce the (nonlinear) mapping
C :V -V, defined as follows

(5.11) C(u) = —Lu — C,(Cy(u, u),u), ueV.
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The system of operator equations (5.1), (5.2) is equivalent to the (single) equation
(*) u+ Clu) =q* in V.

In fact, if the pair w, f is a solution of (5.1), (5.2), by substitution, u = w is a solu-
tion of (*). Conversely, if u satisfies (*), the pair w, f in which w = u, f = C,(u, u),
is a solution of (5.1), (5.2). Thus, by Proposition 5.1, our Theorem will be proved
if we establish the existence of a solution of (*).

To this end we use the following abstract theorem (see e.g. [2]):

Let H be a (separable) Hilbert space (with the scalar product ( , ) and the norm
| || =(.)"), and let C be a completely continuous') mapping of H into H.
Moreover, let

lim ((1 +|C) uu)
(RS

Then I + C maps H onto H.

+ 00 .

We set H = V and verify the conditions of the abstract theorem above for the
operator C defined by (5.11).

a) Complete continuity of C. The estimate
(5.12) |L(u = o))y = const |Fllyzza) [u = o]
holding for all u, v €V, follows immediately from (5.3). Next, the identity
B(u, v; ) = B(v, u; ¢)
inwhichu,veV, ye W(,Z’Z(Q) are arbitrary, is easily obtained by integration by parts

(cf. [10]). Hence,
Cy(u, v) = Cy(v,u) forall wu,veV.

Using this symmetry property, we get by virtue of (5.5) and (5.9)

(5.13) [C(Ca(u, u), u) — C4(Cy(v, v), V)|, <
< const(”u”ﬁ + o9 [ = v|wisco

for all u, veV.

Using Sobolev’s Imbedding Theorem and the trace theorem, the continuity of C
follows from (5.12)—(5.13).

Let {u;} be any bounded sequence in V. Since the imbedding W**(Q) = W'*(Q) is
compact(see[ 11]), there exists a subsequence {u; } of {u;} such that u; — u strong-
ly in W'*(Q) as n > oo. By (5.12)—(5.13), C(u;,) > C(u) strongly in V as n — c0.?)

1) A mapping of H into H is said to be completely continuous if it is continuous and maps
each bounded set of H into a compact set.

2) In fact we have got a slightly stronger property for C than the compactness: If {uj} is any
sequence lying in a bounded subset of ¥ then there exists a subsequence {“j,.} of {uj} andueV
such that C(uj")-> C(u) strongly in V as n— co.
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b) Coerciveness. Observing assumption (i) we get by virtue of Condition (+)
(Lu, u)y = B(F,u;u) <0 forall ueV.

Dispensing with Condition (+) we find an & > 0 such that |[Lu|, < |u, for
all u eV and Ty(@o, ¢4) < & (cf. (5.3); estimate (4.4) is used). Thus,

(Lu, u)y < 3|u]} forall ueV
if Condition (+) holds, or if Ty(¢@o, @) < &, .
An integration by parts leads to the identity
B(v, u; ¢) = B(p, u; v)
which is valid for all v € Wg*(Q), u, ¢ € V(cf. [10]). With the use of (5.10) we obtain
(5.15) (Cy(Cy(u, u), u),u)y, <0 forall ueV.
Gathering (5.14)—(5.15) one gets
(5.16) (I + C)u,u)y = &|ul} forall uev.

Taking into account Proposition 5.1, the existence of an excess variational solution
of boundary value problem I follows by application of the abstract theorem to (*)
The proof of our Theorem is complete.

Corollary. Suppose the assumptions of the Theorem are fulfilled. Then:
(i) Each excess variational solution of the boundary value problem I satisfies
the estimates )

(5.17) ||wny < const K(my; my; ta; hy, ...y by q),
171 o220y S const [K(my; my; t35 by, ..oy hys @)]2

(ii) For sufficiently small K(m,; ms;ts; hy, ..., h,;q), the excess variational
solution of the boundary value problem I is unique.

Proof. (i) The estimate (5.16) yields ”“”v < 2”‘1*”V for cach solution u of (¥).
By (5.7),
“u”V < const K(mz; mystss hy, oo by q) .

Setting w = u, f = C,(u, u) and using (5.9), the estimates asserted are readily seen.
(ii) Using (5.12), (5.14) as well as (5.13) one obtains

”(I + C)u—(I+C) v”,, <[i- const(”uﬂf, + ”UH,Z,)] Hu - v”,,

for all u, v € V. This implies that the solution of (*) is unique in a ball with sufficiently
small radius, centered at the origin. By virtue of (5.17) the assertion (ii) is verified.
Using (4.4) we get for the stress function @ the estimate

@[ o220y < const {Ty(@o, @,) + [K(my; mys 135 by, ooy hys @)]7)
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Remark 5.1. The uniqueness of a variational solution of boundary value problem
I for large “w”v remains unsettled. However, results about the bifurcation of non-
trivial solutions in the case of compression (cf. [1], [7], [10]) show that uniqueness
in general cannot be expected.

Remark 5.2. A careful analysis of the technique of the proof developed above
shows that the system

A*w

li

[®, w] + kD, + kP, +q in Q,

A2 = —3[w, w] = kywye — kow,, in Q

(which describes the equilibrium of a thin elastic shallow shell with curvatures k, k)
with the boundary conditions considered above, possesses a variational solution,
provided the curvatures are sufficiently small.

Remark 5.3. It is easy to realize that also the boundary conditions
w, =0, T(w)+ kgw=1, on I,

could be included without difficulties. Conditions of this type will be considered
in Part II.
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Souhrn
NEHOMOGENNI OKRAJOVE ULOHY PRO KARMANOVY ROVNICE 1.

IvaAN HLAVACEK, JOACHIM NAUMANN

V clanku se dokazuje existence feSeni okrajové ulohy pruzné tenké desky pro
jistou tfidu kombinovanych okrajovych podminek. Deska miiZe byt z¢asti vetknuta,
zCasti podepiend a zCasti pruzné vetknuta a pruzné podepfena nebo volna. Tato
volna ¢ast okraje a Cast podepiena je obecné zatiZena momenty a volna ¢ast i po-
souvajicimi silami. Na celém okraji desky, ktery miZe mit rohy, pisobi téz zatizeni
v roving desky. Okrajové podminky pro prihyb vylucéuji vSak vZdy moznost pohybu
desky jako tuhého celku kolmo k jeji roviné.

Variacni formulace problému je pfevedena na operatorovou rovnici, pro kterou
plati abstraktni existencni véta. ReSeni existuje, kdyZ okrajové zatiZeni, puisobici
v roviné desky, vyvolava v desce tahové namahani nebo je dostateén malé. ReSeni
je jediné, kdyz pticné zatiZeni desky je dostateéné malé.
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