[1] A. S. Besicovitch:
On sufficient conditions for a function to be analytic, and behaviour of analytic functions in the neighbourhood of non-isolated singular points. Proc. London Math. Soc., 32: 1-9, 1931.
DOI 10.1112/plms/s2-32.1.1
[4] E. Giusti:
Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel, 1984.
MR 0775682 |
Zbl 0545.49018
[6] E. J. Howard:
Analyticity of almost everywhere differentiable functions. Proc. American Math. Soc., to appear.
MR 1027093 |
Zbl 0705.30001
[7] J. Jarník, J. Kurzweil:
A nonabsoluteIy convergent integral which admits transformation and can be used for integration on manifolds. Czechoslovak Math. J., 35: 116-139, 1985.
MR 0779340
[8] J. Jarník, J. Kurzweil:
A new and more powerful concept of the $PU$-integral. Czechoslovak Math. J., 38: 8-48, 1988.
MR 0925939
[9] J. Kurzweil:
Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J., 82: 418-446, 1957.
MR 0111875 |
Zbl 0090.30002
[10] J. Kurzweil, J. Jarník:
The $PU$-integral: its definition and some basic properties. In New integrals, Lecture Notes in Math. 1419, pages 66-81, Springer-Verlag, New York, 1990.
MR 1051921
[15] W. Riidin: Real and Complex Analysis. McGraw-Hill, New York, 1987.
[16] 5. Saks:
Theory of the Integral. Dover, New York, 1964.
MR 0167578