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In the past decade the generalized Riemann integral, introduced by Henstock ([5])
and Kurzweil ([9]) some thirty years ago, has been elaborated on extensively in order
to obtain the divergence theorem for all differentiable (not necessarily continuously)
vector fields. Among many attempts, only two methods succeeded in defining
integrals which do not depend on the affine structure of R™. One, due to Jarnik
and Kurzweil ([ 7], [8], and [10]), utilizes C" partitions of unity to integrate functions
with compact support defined on R™; we shall refer to it as PU integration (PU for
“partition of unity”). The other, introduced independently by Pfeffer ([ 14] and [11]),
is based on a more traditional concept of set partitions. It integrates functions defined
on bounded BV subsets of R™ (BV for “bounded variation” in DeGiorgi’s sense);
we shall refer to it as BV integration. 4

The two approaches have complementary merits and shortcomings. The PU
integrable functions remain PU integrable when multiplied by a C! function, a fact
that appears difficult to establish for the BV integral. On the other hand, a function
which is BV integrable in a bounded BV set A is also BV integrable in any BV subset
of A. Thus BV integrable functions remain BV integrable when multiplied by the
characteristic function of a BV set. Whether there is a useful class of sets whose
characteristic functions have the analogous property with respect to all PU integrable
functions defined in [7] is unclear. The PU integrals of [8] and [10] have properties
similar to those of singular integrals such as the Cauchy principle value; it follows
that integrability over a set generally does not imply integrability over a subset, no
matter how regular it is.

In the present paper, we combine the distinct ideas from the definitions of the PU
and BV integrals by employing BV partitions of unity. The resulting integral is co-
ordinate free, integrates the divergence of differentiable vector fields, and enjoys the
merits of both the PU and BV integrals. Specifically, integrable functions in a bounded

*) The work of this author was partially supported by the University of Louvain in Louvain-
la-Neuve, Belgium.
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BV set A remain integrable when restricted to a BV subset of A, as well as when
multiplied by a Lipschitzian function — a better multiplication property than that
of the PU integrals. A strong form of Cousin’s lemma (Lemma 1.2), facilitated by
ideas of Besicovitch ([1]) and works of Howard ([6]) and Pfeffer ([12]), is the basis
of our definition.

The paper is organized into four sections. After we establish the notation and
terminoloy (Section 1), the integral is introduced in Section 2. There we prove its
basic properties including that of multiplication by Lipschitzian functions. We also
prove a new type of convergence theorem (Theorem 3.11) which implies that the
integral can be interpreted as a distribution. A very general divergence theorem for
almost differentiable vector fields with substantial singular sets is proved in Section 3.
Section 4 si devoted to the proof of coordinate independence. We use a recent
result of Pfeffer ([13]) to show that the integral is invariant with respect to lipeo-
morphic (i.e., bi-Lipschitzian) changes of coordinates.

1. PRELIMINARIES

Throughout this paper, m = 1 is a fixed integer. The set of all real numbers is
denoted by R, and the m-fold Cartesian product of R is denoted by R™. For x =
= (& .néy)and y =y ..nn,)inR™and e = 0, let x.y = &y + ..o + Ellne
|x| = (x.x), and U(x,e) = {yeR™ |x — y| <e}. If E = R™, then d(E), clE,
int E and bd E denote, respectively, the diameter, closure. interior and boundary
of E.

All functions and functionals considered in this paper are real-valued. If f is
a function on a set 4 and B = A, we denote by /[ B the restriction of f to B; when
no confusion can arise we write f instead of f [ B. The algebraic and lattice operations
as well as convergence among functions on the same set are defined pointwise; in
particular, this applies to sequences of real numbers. Given a function 6 on R™,
we set S, = {x e R™ 0(x) + 0} and let d(0) = d(S,). The characteristic function
of a set E = R™is denoted by yg.

A measure is always an outer measure. The Lebesgue measure in R™ is denoted
by 2, however, for E = R™ we usually write |E| instead of A(E). The (m — 1)-
dimensional Hausdorff measure # in R™ is defined so that it is the counting measure
if m = 1, and agrees with the Lebesgue measure in R~ ! if m > 1. A thin set is
a subset of R™ whose J# measure is o-finite. The symbol [ signifies that we are using
the Lebesgue integral (with respect to A, #, or any other measure, as the case may
be); the new integral introduced in Section 2 will be denoted by j*. Unless specified
otherwise, the terms ‘““measure”, “measurable”, ‘“Lebesgue integrable”, “almost all”
and ““almost everywhere”, refer to the measure 4. For 1 < p < o0, the measure 4
is also used to define the space IP(R™) whose norm is denoted by |°|p.

Let E — R™. We say that an x € R™ is, respectively, a dispersion or density point
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of E whenever

iminf EOUGE _ o o0 jim sup IRT = E) 0 Ul o)l _

=0+ (2e)™ =0+ (28)"'
The set of all density points of E is called the essential interior or E, denoted by int, E,
and the set of all nondispersion points of E is called the essential closure of E, denoted
by cl, E. The essential boundary of E is the set bd, E = cl, E — int, E. Clearly
intEcint,Eccl,EcclE, and so bd, E =« bd E. If cl E — cl, E is a thin set,
the set E is called solid.

We say that 0 e L'(R™) is of bounded variation if its distributional gradient DO
is a vector-valued Borel measure in R™ whose variation |D0] is finite; we set ||0[| =
= |DO| (R™) and call it the variation of 0. For the basic properties of functions of
bounded variation we refer to [4] and [19]. In particular, it is shown in [4, Section
1.30] that a function 6 € L'(R) is of bounded variation if and only if there is a func-
tion 3 on R equal to 0 almost everywhere and such that the classical variation of 3
on each compact interval K < R is finite and bounded by a constant independent
of K.

By BV, we denote the family of all nonnegative functions 6 of bounded variation
for which 0 and S, are bounded. The regularity of 8 € BV, is the number

,,,,, if d(0) 6] >0,

0 otherwise .

The family of all sets A = R™ whose characteristic function y, belongs to BV, is
denoted by BV. For A € BV we write | A]| and r(A) instead of [x,| and r(y,), respec-
tively. If E = R™ we denote by BV, (E) and BV the families of all 0 € BV, with
Sy = E and all A € BV with A < E, respectively.

Let A € BV. The number |A4| is called the perimeter of A; by [3, Section 2.10.6
and Theorem 4.5.11], |A|| = #/(bd, A). There is a Borel vector field n, on R™,
called the Federer exterior normal of A, such that

AH(BAbd, A) = [p|ny d# and [,divodi = [yuqv.n,d#

for every s#-measurable set B = R™ and every vector field v continuously differen-
tiable in a neighborhood of ¢l A (see [3, Chapter 4]). An x € R™ is called a perimeter
dispersion point of A whenever

lim #[bd, A U(x,8)] _
s (20

0.

The set of all x € int, A which are perimeter dispersion points of A4 is called the critical
interior of A, denoted by int, A. According to [ 18, Section 4], #(int, A — int, A) =
= 0.

Again, let Ae BV. A partition in A is a collection (possibly empty) P =
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= {(Ay, xy), ..., (4,, x,)} where A,, ..., A, are disjoint sets from BV and x; ecl, 4,,
i=1,...,p; the set Y-, A4, is called the body of P, denoted by (JP. A pseudo-
partition in A is a collection (possibly empty) Q = {(0, x,), ..., (0,, x,)} where
0, ..., 0, are functions from BV, (A) with 7., 0, < y,and x;ecl, S,,, i = 1,..., p;
the function ) 7_, 0, is called the body of Q, denoted by ) Q. If P = {(4,, x), ...
s (Apy x,)} is a partition in A, then Q = {(x4,, X1), ... (x4,» X,)} is a pseudo-
partion in 4 and Y Q = yyp.

A caliber is any sequence n = {n;} of positive numbers. A gage in E = R™ is
a nonnegative function & defined on cl, E whose null set Ny = {x e cl, E: (x) = 0}
is thin.

Definition 1.1. Let ¢ > 0, let n be a caliber, and let § be a gage in 4 € BV. We say
that a pseudopartition P = {(0, x,),...,(0,, x,)} in A4 is:

1. e-regularif r(0;)) > ¢, i = 1,..., p;

2. 8-fineif d(0;) < 8(x;), i = 1, ..., p;

3. (&, n)-approximating if y, — Y P = Y%_, o; where ¢, ..., 0, are functions

from BV, (A) with |l¢;| < 1/e and |o;], < n;.j = 1,..., k.
A partition {(4,, x,), ..., (4,, x,)} in A is called e-regular, 5-fine, or (e, n)-approxi-
mating whenever the pseudopartition {(x4,, X;), ..., (x4,» X,)} is &-regular, -fine,
or (&, n)-approximating, respectively.

In this pseudopartitions rather than partitions will play a key role. The family of
all e-regular -fine (g, n)-approximating pseudopartitions in A € BV is denoted by
IT(A, &5 6, n). The existence of e-regular d-fine (e, n)-approximating partitions in
A € BV established in [12, Proposition 2.5] yields the following existence result for
pseudopartitions.

Lemma 1.2. Let § be a gage in A€ BV and let n be a caliber. There is a x > 0,
depending only on the dimension m, such that IT(A, &; 5, n) + O for each positive
e < x.

2. THE INTEGRAL

Let A e BV and let f be a function on cl, A. If G is a functional (of any kind)
on BV, (A), we set

14
o(7,P;6) = 3 1(x) 60)
for each pseudopartition P = {(8,, x,), ..., (0,, x,)} in A.

Definition 2.1. Let A € BV and let G be a functional on BV,(A). We say that
a function fon cl, A is G-integrable in A if there is a real number I with the following
property: given ¢ > 0, we can find a gage J in 4 and a caliber # so that |a(f, A;G) —
— 1| < & for each P e IT(4, ¢; 0, 1).

The family of all G-integrable functions in 4 is denoted by #(A4; G). It follows from
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Lemma 1.2 that the number I in Definition 2.1 is determined uniquely by f € .#(4; G).
We call it the G-integral of f over A, denoted by fffdG.

In the present paper we shall deal predominantly with the situation where G(0) =
= [, 0dJ for each 0 € BV, . In this case we simplify the notation by writing o(f, P),
F(A), and [} f instead of o(f, P; G), #(A; G), and [} f dG, respectively. Similarly,
we say integrable and integral instead of G-integrable and G-integral, respectively.
It follows easily from [12, Corollary 3.4] that the tight variational integral of
[11, Remark 5.2, 4(a)] is an extension of the integral we have just defined.

Proposition 2.2. Let A € BV and let G be a functional on BV,(A). Then #(A; G)
is a linear space and the map f+ [ f dG is a linear functional on #(A; G), which
is nonnegative whenever G is.

This proposition follows directly from Definition 2.1. The routine proof of the
following Cauchy test for integrability is left to the reader.

Lemma 2.3. Let A€ BV and let G be a functional on BV,(A). A function f on
cl, A is G-integrable in A whenever given ¢ > 0, there is a gage é in A and a caliber n
such that |o(f, P; G) — o(f, Q; G)| < ¢ for each P and Q in II(A, ¢; 8, n).

Let A € BV. A division of A is a finite disjoint subfamily of BV, whose union is A4.
A function F on BV, is called

(i) additive if F(A) = Y .o F(D) for each division 2 of 4;

(i) continuous if given & > 0 there is a v > 0 such that |F(B)| < ¢ for each

Be BV, with |B| < /e and |B| < v.

Proposition 2.4. Let A € BV, let G be a functional on BV ,(A), and let f € #(4; G).

Then the following holds:

1. The restriction fg = f[ cl, B belongs to #(B; G) for each Be BV, and the
map B> [y f5 dG is an additive continuous function on BV,.

2. Given ¢ > 0, there is a gage 6 in A such that
Id
Y (xi) G(ra,) — 4,/ dG| < &
i=1

for each e-regular S-fine partition {(A,, x,), ..., (A,, x,)} in A.
The proofs of parts 1 and 2 are completely analogous to those of [12, Proposition
3.2] and the “only if” part of [12, Theorem 3.3].

Proposition 2.5. Let A € BV, let G be a functional on BV+(A), and let f be a function
oncl, A. Suppose that 9 is a division of A such that f is G-integrable in each D € 9.
If 9 consists of solid sets, then f is G-integrable in A.

Proof. Choose an & > 0 with |[D|| < 1/e for each D e @. If n is the number of
elements in &, find gages 6, in D € 2 and a caliber n so that

lo(f, Q: G) — [5 f dG]| <§
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for each Q € IT(D, ¢/2; 6, 17). Since the sets from 2 are disjoint and solid, we may
assume that §,(x) = 0 for each xecl, D which belongs to ¢l E for some E€ @
different from D; indeed,

cl, DnclE = (int, Dubd, D)nclE = (clE — cl, E)u bd, D

is a thin set since #(bd, D) < +o0. In view of this, we may further assume that
U(x, 6p(x)) N E = 0 for each xecl, D and E € & different from D. Now it is clear
that setting §(x) = §,(x) whenever x e cl, D for some D e @ defines a gage d in A.

Let Pell(A,e:6,n). and for De 2 let P, = {0, x)e P: xecl, D}. It follows
from the definition of ¢ that P, is an e-regular §,-fine pseudopartition in D and
P = Upeg Pp. There are functions o, ...,0, in BV,(A4) such that [o,] < 1/,
lojls < njand Y% , 0, = x4 — YP. Since

k
ZD—ZPD:XD(XA“ZP)=ZZ:)Q;
=1

where “ngj“ < ”D” + ”Qj” < 2[e, and |)(,,gj[, =< IQill <n;forj=1,.... k, we see
that Pj, € IT(D, ¢/2; &5, n) for each D € 9. Consequently
lo(f. P G) = 5[5,/ 4G| £ 3 |o(/. Pp: G) = [5/dG| <z,
el 37

and the G-integrability of fin A is established.

Remark 2.6. We shall see later (Remark 4.5) that Proposition 2.5 is false if a member
of 2 is not solid. This deficiency in additivity can be easily removed by extending the
integral along the lines described in [11, Sections 8 and 9].

Lemma 2.7. Let A€ BV and let g be a Lebesgue integrable function on cl, A.
Given ¢ > 0, there is a positive gage 6 in A such that

P
,_Zl lg(xi) jA 0;dA — f,; g0; dll <e

for each 5-fine pseudopartition {(0y, x,), ..., (0,, x,)} in A.
This lemma is a special case of [ 13, Lemma 2].

Lemma 2.8. Let A€ BV and let g be a Lebesgue integrable function on cl, A.
Given ¢ > 0, there is an n > 0 such that |, |g0| dZ < ¢ for each 0 e BV,(A) with
0], < 1/e and |0, < n.

Proof. If the lemma is false, there is an ¢ > 0O such that forn = 1,2, ..., we can
find 0, € BV,(A) with |,|,, < 1/e, |0,], <27" and [,|g0,] d2 = e. Letting 0 =

= lim sup 0, it is easy to verify that [, 0 dA = Oand [, |g0| dA 2 &, a contradiction.

Proposition 2.9. Let A € BV, let g a Lebesgue integrable function on cl, A, and
let G(0) = [4 g0 dA for each 0 € BV.(A). A function f on cl, A is G-integrable in A
if and only if fg is integrable in A, in which case j:fdG = jj fg.

Proof. Choose an ¢ > 0 and for n = 1, 2, ..., find positive functions J, on cl, 4
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so that

™s

lg(x;) f4 0,44 — [ 90, d2] < ;8’27'

i=1

for every d,-fine pseudopartition {(0,, x,),...,(0,, x,)} in A4 (see Lemma 2.7). If
E,={xecl, A:n — 1 £ |f(x)| < n}, n =1,2,..., then cl, 4 is the disjoint union
of the E,’s. Given x ecl, 4, let 6(x) = §,(x) if xe E,. If Q = {(9,, ¥;), ..., (3. »,)}
is an J-fine pseudopartition in A, then

io'(f!ﬁ Q) —a(f, Q: G)[ §1§q,l If(‘,)l Ig(."j) “A ‘91' di — j,l g'()j d/{] =<

= Z Z If(‘;)l |g(."j) 4% di— .[A g9; d’il < Z," ;%2" =¢£,

n=1yeE,
and the proposition follows.

Proposition 2.10. Let A € BV and let g be a Lebesgue integrable function on cl, A.
Then ge J(A) and (5 g = [, g di.

Proof. Let G(0) = [, g0 dA for each 0 e BV,(A) and let f = y, 4 In view of
Proposition 2.9, it suffices to show that fe€ .#(4; G) and [ fdG = [, g di. Hence
choose an ¢ > 0 and use Lemma 2.8 to find 5;, j = 1,2, ..., so that |, IgB| dil <
< £27/ for each 0 € BV, (A) with |0,],, < 1 and |0;|, < n;. Let n = {n,} and select
an (e, n)-approximating pseudopartition P = {(0,, x,), ...,(0,, x,)} in A. There are
01, -, @ in BV, (A) such that |o;|, <nj;, j=1,....k and Y5_,0; =y, — 3 P.
It follows that

lo(f, P;G) — fagdi| < [4|X P — 1||g|dL =
k k
=Y [algoj|di <Y e27 <
j=1 j=1
and the proof is completed.

Corollary 2.11. Let A € BV, and let f and g be functions on cl, A which are equal
almost everywhere. Then f € S(A) if and only if g € F(A), in which case {5 f = [ g.

Remark 2.12. In view of the Corollary 2.11, we shall extend the definition of in-
tegrabiity in A € BV to all functions defined almost everywhere in cl, 4, in particular,
to all functions on A. Since the tight variational integral of [11, Remark 5.2, 4(a)]
extends the integral defined in this paper, [11, Corollary 5.12] implies that all
integrable functions are measurable, it follows that the integral enjoys properties
identical to those stated in [11, Corollary 5.14].

3. MULTIPLICATIVE PROPERTIES OF INTEGRABLE FUNCTIONS

For 1 £ p £ o, the Sobolev space W'”(R™) consists of all functions g € I’(R™)
such that the distributional gradient Dg of g is a vector field on R™ whose norm |Dg]
belongs to I’(R™): the I norm of |Dg| is denoted by | Dgl|,. We note that each
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ge W"'(R™) is a function of bounded variation with |[g|| = ||Dg|,. For the basic
results about the Sobolev spaces we refer to [ 19, Chapter 2].

Let g € L'(R™) be a locally Lipschitzian function. By Stepanoff’s theorem (|3,
Theorem 3.1.9]), the usual gradient of g is defined almost everywhere in R™, and it
follows from [3, Theorem 4.5.6, (5)] that it is equal to the distributional gradient Dg
of g. Thus g is of bounded variation if and only if Dg € L'(R™), in which case ||g| =
= [gm |Dg| dA.

Lemma 3.1. Let g € L'(R™) be a bounded function of bounded variation. Then
there is a sequence {g,} in W'''(R™) of locally Lipschitzian functions for which
lim Ig,, — g]l = 0, lim ”g,,” = ”g”, qnd Ig,,lﬁ < Iglmfor n=12,....

Proof. By [4, Theorem 1.17] there is a sequence {u,} in L'(R™) of continuously
differentiable functions with lim|u, — g|, = 0 and lim |u,| = |g]|. For n =
=1,2,..., let

/}’ —|g|w} :

Then each v, is a locally Lipschitzian function in L'(R™) such that |v,|,, < |g|,, and
|Dv,| < |Du,|. Hence ||v,| < |u,[. and it is not difficult to verify that lim |v, — g, =
= 0. By [4, Theorem 1.9],

l|l < timinf o] < tim Ju,| = [q|

v, = max {min {u,, |g

and it suffices to select a subsequence {g,} of {v,} so that lim |g,| = lim inf |v,].

Corollary 3.2. If g, 0 € L'(R™) are bounded functions of bounded variation, then
so is g0 and

lg0] < gl - l6].. + [0] - lg].. -
Proof. Let {g,} and {0,} be, respectively, sequences of locally Lipschitzian
functions associated to g and 0 according to Lemma 3.1. Since
“gnon“ = IR’" ID(gnen)l d} g jR"‘ |Dgn| . Ionl d'{ +
+ frn [DO,] - [g.] 42 < .| - 0] + [64] - 9.

and lim |g,,0,, - g(’)]l = 0, the corollary follows from [4, Theorem 1.9].

Lemma 3.3. Let g be a bounded nonnegative function in L'(R™), and let 0 € BV,
1.If m=1 and g is of bounded variation, then g0 e BV, and |g0| <
< 101 ol + lo])
2.1f m> 1 and ge W""(R"), then g0 € BV, and |g0| < |0| (|g].. + c|Dg|n)
where ¢ > 0 is a constant depending only the dimension m.
Proof. If m = 1 then [0],, < [|0]. and it suffices to apply Corollary 3.2. It m > 1,
let {0,} be a sequence of locally Lipschitzian functions associated to 6 according
to Lemma 3.1. The Holder and Sobolev inequalities yield

[66.] = (an 100,/ o] 42 + Jur [0, |Dg] 42 <
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< [0, -9l + (Tam 0" P) ™2 (fm | Dg|™)! ™ <
< 0. (lg].. + <[ Dg]l..)
where ¢ > 0 is a constant depending only on m ([4, Theorem 1.28]). The lemma
follows from [4, Theorem 1.9].
The proof of the next theorem is modeled on that of [8, Theorem 4.1]. It utilizes

in an essential way that the integral has been defined by means of pseudopartitions
rather than partitions (as in [ L1, Definition 7.3] or [ 12, Definition 3.1]).

Theorem 3.4. Let A c BV, f € #(A), and let g € L'(R™) be bounded. Then f . (g[cl.A)
belongs to J(A) whenever either m = 1 and g is of bounded variation, or m > 1
and g e W"™(R™).

Proof. Let g € L'(R™) satisfy the assumptions of the theorem. Since #(A) contains
constants and the integral is a linear functional on J(A), we may assume that
1/3 < g(x) £ 2/3 for xeclA. It follows from Lemma 3.3 that if 0 belongs to
BV,(A), so do g0 and (1 — g) 0; moreover

max {90l (1~ o)} = [o] and

min {r(g0), r((1 — 9) 6)} = B r(6)
for a sufficiently small positive constant f < 1 independent of 0.

Setting G(0) = [, g0 dA for each # € BV, (A), it suffices to show that f e #(4; G)
(see Proposition 2.9). To this purpose, choose ¢ > 0 and find a gage é in 4 and
a caliber n so that |o(f, R) — [ f| < ¢/2 for each R e IT(A, Be[2; 5, 2n). Let P =
={(0,, x,),....(0,.x,)} and Q = {(9, ¥), ..., (%, )} be in IT(A, ¢; 8, n), which
is a subset of IT(A, Pe/2; &, 2n). The collection

S =1{(g0,, x,), ..., (90,, x,), ([t — g] 81, 1), .- ([1 = 9] 9 ¥,)}
is a (Be)-regular 5-fine pseudopartition in A. Assuming that S e IT(4, Be/2; 3, 21),
we obtain

=

lo(f, P; G) = o(f, @; G)| = | ¥ f(x) [4 90:d2 +

i=1

+ .;qlf(yj) fa(1—g)8;di - if(yj) [49,dl| =
= |o(£, S) = o(f, Q)| < |o(f, S) = [ f] + |[Xf — o(f, Q)| <&,

and the theorem follows from Lemma 2.3. Thus it suffices to show that the pseudo-
partition S in A is (f¢/2, 2)-approximating.
There are functions ¢y, ..., g and 1y, ..., T, in BV, (A) such that max {[|o;[|, [} <
< 1fe, max {|o;|1, |t;]i,} < n;j=1,..., k and
k

k
XA'_"ZP'*"Z‘IQJ‘_‘ZQ'*'ZTJ'

From this we see that S is indeed a (B¢/2, 2n)-approximating pseudopartition in 4,
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since
ZA_ZS=Q(XA_ZP)+(1—g)(XA_ZQ):
k
=2 [90; + (1 = 9) 1]
where

lge; + (1 = 9) 7] < (He,-ll+ﬂr,-ll><§2/§ and

= |-

lge; + (1 = @) ijli < lojls + [l < 2n; for j=1,... k.

Remark 3.5. A multiplier is a function g on R™ such that for each A € BV and each
fe #(A) the function f.(g[cl, A) belongs to #(A). Using Theorem 3.4 and the
technique of Sargent (see [17, Section 3]), it is easy to show that a function g on R
is a multiplier if and only if it is of bounded variation.

Question 3.6. What are the multipliers for m > 1? In particular, is each function
of bounded variation a multiplier even when m > 1?

Corollary 3.7. Assume that m = | and A = [a, b]. Let f € #(A), and let F(x) =
= _[[*a_x]ffor each x € A. If g is a function of bounded variation on R, then

[ifg = F(b) g(b) — F(a) g(a) — 4 F dg
where j'A F dg is the classical Riemann-Stieltjes integral.
Proof. By Theorem 3.4, fg € #(A4), and by [11, Proposition 6.8. 1], the integral
_f: fg has the same value as the Denjoy-Perron integral of fg. Thus the corollary

follows from the integration by parts theorem for the Denjoy-Perron integral ([ 16,
Chapter 8, Theorem (2.5)]).

Corollary 3.8. Let Ae BV and fe #(A). If g is a Lipschitzian function on cl,A
then fg e #(A).

Proof. The function g is bounded because A is bounded. By Kirszbraun’s theorem
([3, Theorem 2.10.46]), g can be extended to a Lipschitzian function in R™, still
denoted by g, which may be further assumed to have a compact support. Thus
g € W"® and the corollary follows from Theorem 3.4.

Theorem 3.9. Let A € BV, fe #(A), and let {g,} be a sequence in L'(R™) such that
sup Ig,,]m < +o00 and lim g, = 0 uniformly almost everywhere in A. Suppose that
either of the following conditions holds:

L. m = 1, each g, is of bounded variation, and sup [|g,| < + oo;

2. m > 1, each g, belongs to W'"™(R™), and sup | Dg,|,, < +o0.

If h, = g,[cl A, then fh,e #(A),n = 1,2, ..., and lim [} fh, = 0.

Proof. In view of Proposition 2.2, we may assume that 0 < g, < 1/2 for n =

= 1,2,.... It follows from our assumptions and Lemma 3.3 that if 6 belongs to
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BV, (A), so do ¢,0 and (1 — g,) 0; moreover
max l”gn(}” ”(1 — Gn 0” ”()U/ﬂ and r((l - gn) 0) ; ﬂr(())
where f# < 1 is a positive sufficiently small constant independent of n and 0.

Let G,(0) = [4g,0dJ for each 0e BV, (A) and n = 1,2,.... Then fe #(4, G,)
by Theorem 3.4 and Proposition 2.9, and it suffices to show that lim [ fdG, = 0.
To this end, choose a positive ¢ < min {x, /[ 4]} where x is the constant from
Lemma 1.2. Find gages §, 5 in A and calibers 5. '™ so that

lo(f. P) — [%f| <¢/3 and |o(f, Q:G,) — [%fdG,| <¢3

for each Pe (A, pe; 8, n) and Qe IT(A, &: 6™, n™). With no loss of generality,

we may assume that 6 < & and 7\ < (1 + y,)n;., for n,j=1,2,....y, bzing

the essential supremum of g, in A. Fix an integer n = 1 with y,,[Al <n,, and

use Lemma 1.2 to find a Q = {(3,, »,),....(3,. »,)} in IT(A4, & 5™, n™). Then
P={([1=g]%. ) ([1 = 9a] % 1)}

is a (Be)-regular §-fine pseudopartition in A. There are g, ..., g, in BV, (A) such that

(n)

le;| < /e, Jojly < n$™, and Y5_, 0; = 74 — Y 0. Hence
7,4_ZP=gnZA+(I'—gM)(ZA ZQ —'gn/A+Z(l gn -'
where [|g,74] < [A]/B < 1/(Be) and |g,x4|1 < 74/4| < 1, together with
lol _ 1
1 - < L — d
(1t = g.) o] < s < O
(=g el < (1 + ) ojle < (1420 S mjvy

for j = 1, ..., k. From this we conclude that P e IT(A, Be: 8, n). Consequently

+ Ii 1050 09,02 = $7(0) L1 = 09, 7] <
<3+ |o(f. Q) - L.fl +|[5f—o(f.P) <e.

and the theorem is proved.
A sequence {g,} of Lipschitzian functions on a set E = R™is called equilipschitzian
whenever the Lipschitzian constants of the g,’s have a common bound.

Lemma 3.10. Let A € BV, ]A| > 0, and let {h,,} be an equilipschitzian sequence
of functions on cl,A. If lim [, |h,| dA = O then lim h, = O uniformly.

Proof. Note that each h, has a unique extension, still denoted by h,, to the compact
set C = cl(cl,4). Let « > 0 be a common bound for the Lipschitzian constants of
the h,’s. Proceeding towards a contradiction, suppose there is a y > 0 such that for
n=12,.., wecan find a z, € C with |h,(z,)] > 3y. Passing to a subsequence, we
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may assume that lz,, — z] < y/a for some z € C and all n. It follows that
[h(X)] 2 |h(z,)] = #|z0 — x| > 3y — &z, — 2| — afz — x| >
> 2y — ozlz - x[

foreachxeCand n = 1,2,.... Now if U = U(z, y/«), then

J‘ || d2 gf <2y—az)dl=y|AmU’ >0
A AnU o

for all n, a contradiction.

Corollary 3.11. Let A€ BV, fe #(A), and let {h,} be an equilipschitzian sequence
of functions on cl A. If lim |, ]h,,| di = 0 then lim [ fh, = 0.

Proof. Avoiding triviality, assume that [A] > 0. Using Kirszbraun’s theorem
([3, Theorem 2.10.46]), each h, can be extended to a Lipschitzian function g, on R™
such that g, has a compact support, |g,|, < sup {|h,(x)|: x € cl.4}, and the

Lipschitzian constant of g, is less than or equal to the Lipschitzian constant of h,,.
In view of this, the corollary follows from Theorem 3.9.

Corollary 3.12. Let A€ BV and fe #(A). If ®(g9) = [% fg for each rapidly de-
creasing C* function g on R™, then & is a tempered distribution of order at most
one whose support is contained in clA.

4. THE DIVERGENCE THEOREM

Let f be a function defined on a set E = R™. We define the differentiability of f
at x e int E in the usual way (see [15, Definition 7.22]). Thus differentiability implies
continuity and the existence of partial derivatives, which need not be continuous.
For i = 1, ..., m, the i-th partial derivative of f is denoted by J,f, and if v =
= (f1+ .- f,n) is a differentiable vector field, we set div v = Y7L 8,f,. If X is a mea-
surable subset of E, we say that f is differentiable on X whenever f can be extended
to a function g such that the domain of g is a neighborhood of X and g is differentiable
at each x € X. Given such an extension g and x € X, we set ,f(x) = d,g(x) for i =
=1,...,m. Up to a set of measure zero, thus defined functions ¢,/ on X do not
depend on the choice of g (see [11, Lemma 5.16]).

Let 0 € BV,. Then DO = (u,, ..., u,,) where u, ..., u,, are signed Borel measures
in R™ whose support is contained in cIS,, and u = |D0| is a finite positive Borel
measure in R™ whose support is also contained in clS,. On a Borel set E = R"™,
let fand v = (f,, ..., f,) be, respectively, a Borel function and a Borel vector field.
If cISy = E, we write [, f|D0] or [ f(x)|D 0(x)| and [ v.DO or [, v(x).D 0(x)
instead of [;fdu and )i, [;f; du;, respectively; in this notation, |0 = [, |D0|.
It follows from [3, Chapter 4] that

[a v.Dy, = —IbdA v.ngd#
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for each 4 € BV with cl4 < E. If w is a C*® vector field in R™, the definition of the
distributional gradient DO implies the formula

few. DO = —[;0divwdi

to which we shall refer as the integration by parts.

Lemma 4.1. Let v be a bounded vector field defined on a set E = R™ which is
differentiable at x € int E. Given ¢ > 0, there is a 6 > 0 such that

[div v(x) 0], + [as, v - DO| < €|6],
for each 0 e BV, for which xeclS,, d(0) <9, r0)> ¢, cISy = E, and v] clS,
is Borel.

Proof. For each yeR™ let w(y) = v(x) + Dov(x)(y — x) where D v(x) is the
differential of v at x. Then div w(y) = div v(x) for every y € R™, and there is a function
h on E such that lim,_ h(y) = 0 and |o(y) — w(y)| < h(y) |x — y| for all yeE.
Given ¢ > 0, choose a & > 0 so that h(y) < ¢ whenever y e E n clU(x, §). Let

0 € BV, be such that B = clS, is a subset of E, x ¢ B, d(0) < 8, r(0) > ¢, and v[ B
is Borel. Integrating by parts, we obtain

[div o(x)|0], + fgv. DO| = |[p0divwdi + [zv.DO| =
{5 [0(y) = w()]. DOW)| £ [y [o(y) = w(y)| . [DO(y)| =
feh(y)|x — y| . |DO(y)| < > d(0)||0] < &|6], .

IIA

Lemma 4.2. Let A € BV and let v be a continuous vector field in clA. Given ¢ > 0,
there is an n > 0 such that |[,,v. DO < & for each 0 € BV,(A) with [[0] < 1/e
and |0|l <.

Proof. Since cl4 is a compact set, there is a C* vector field w in R™ so that
[o(x) — w(x)| < €%/2 for each xeclA. Let y = sup,4 |div w(x)| and n = &/(2y).
Given 0 € BV, (A) with 0] < 1/e and |6], < 7, the integration by parts yields

[feav. DO| < fouu|v — w|.|DO| +

2
+ Jaa |0 divw] di < 62 lo] + 0], <e.

Lemma 4.3. [f N < R™ has measure zero and ¢ > 0, there is a nonnegative linear
functional H on L*(R™) having the following properties:

1. [H(0)| < €/0|../3 for each 0 e L*(R™).

2. Given x € N and an integer n 2 1, there isa 6 > 0 such that H(6) = (n[e) IOII

for each nonnegative 0 € L*(R™) with S, < U(x, §).

Proof. Find a decreasing sequence {U,} of open sets containing N so that |U,,| <
<& 127" forn=1,2,...,andlet w(E) =Y, ¢~ '|[ENU,|foreach E = R". Then p
is a measure in R™ and u/R™) < ¢/3. So the nonnegative linear functional H: 0+
> [gm 0 dpe on L*(R™) satisfies the first condition of the lemma. Given x € N and an

707



integer n = 1, there is a § > 0 such that U(x, §) = U,. It follows that H(0) >
> ¢ 'n [gu0di = & 'n|6|, for each nonnegative 8 € L°(R™) with S, = U(x, ).

Let v be a vector field defined on a set E = R™. We say that v is almost differentiable
at xeint E if

If X is a measurable subset of E, we say that v is almost differentiable on X whenever v
can be extended to a vector field w such that the domain of w is a neighborhood
of X and w is almost differentiable at each x € X. By Stepanoff’s theorem ([3,
Theorem 3.1.9]), w is differentiable almost everywhere in X, and by [11, Lemma
5.16], almost everywhere in X, div w is determined uniquely by v. In view of this,
we let div v!x) = div w(x) for each x € X at which w is differentiable.

Recall that a thin set is a subset of R™ whose & measure is o-finite.

Theorem 4.4. Let A€ BV and let T be a thin set. Suppose that v is a continuous
vector field on clA which is almost differentiable on cl,A — T. Then div v is
integrable in A and

fidive = [y 0. ngdt .

Proof. By our assumptions, v is extendable to a vector field w such that w is
defined on a set E whose interior contains cl,4A — T and w is almost differentiable
at every xecl,4 — T. Let C = cld. Since w [ C = v is continuous, we have

foaav.ngd# = [guw.ngd# = —fcw. Dy, .

By Stepanoff’s theorem ([3, Theorem 3.1.9]), there is a set N < cl,A — T such that
|N| = 0 and w is differentiable in cl,A — (T'U N). In view of Corollary 2.11, we may
extend div w to cl,4 by zero.

Choose an ¢ > 0, and let H be the functional from Lemma 4.3 associated with N
and ¢/3. If x € N there is an integer n = 1 and &, > 0 such that

[w(y) — w(x)| < nly — x| and H(0) = g |0,

for each y e U(x, 8,) and each 0 € BV, (A) with S, = U(x, 8,). Since divw(x) = 0,
we have
|div w(x) fc 0 d2 + fcw. DO| =

[fe [w(y) = w(x)]. DO(y)| < fc|w(y) — w(x)|.|DO(y)| <
nlely = x| 1D 00| < nd(®) o] < o], < HE)

for each 6 € BV, (A4) with x e cl,S,, d(0) < J, and r(0) > . Select an ¢ > 0 with
€'|A| <e[3.1f xis in E = cl,A — (T U N), we use Lemma 4.1 to find a §, > 0 so that

|divw(x) [, 0dA + [cw.DO| <& [,0dA

A
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for each 0 e BV,(A) with x € cl,S,, d(0) < J,, and r(0) > &. By Lemma 4.2 there
is a caliber n such that |[.w. D6| < &27//3 for each integer j = 1 and each 0 e
€ BV,(A) with 0] < 1/eand |0], < n,. Define a gage & in A by letting

3(x) 6, if xecldA-T,
0 if xeTnclA,

and choose a P = {(0y, x,), ..., (0,, x,)} in IT(4, &8, n). Then y, — Y P =Yh_, ¢,
where ¢; € BV, (A), |lo;| < 1]e, and |o;|, < n; for j = 1, ..., k. Therefore

p
lo(div w, P) = [paqv.n,dof| = | Y divw(x,) fc 0,dA + [ew. Dy, <
=1

I\
M=

IIA

.
|div w(x;) fc 0,dA + fcw.DO;| + Y |fcw. Doy
i =

I\

k
Y HO) + ¢ [c0,di+5 Y27 <
XieN ji=1

xi€E 3
14
<H(S0)+ ¢ [c(Y0,)dA +§ <e,
XN i=1

and the theorem is proved.

Remark 4.5. As the tight variational integral of [ 11, Remark 5.2, 4(a)] extends the
integral defined in this paper, the function f of [11, Example 5.21] shows that the
condition of “solidity” cannot be omitted from Proposition 2.5 (cf. Remark 2.6).

5. THE CHANGE OF VARIABLES

Let E = R™ be a measurable set. For a Lipschitzian map &: E > R™ (see [3,
Section 2.2.7]), we denote by det @ the determinant of the differential D& of ¢.
By the Kirszbraun and Rademacher theorems ([3, Theorems 2.10.43 and 3.1.6]),
the function det @ is defined almost everywhere in E, and by [ll., Lemma 5.16],
it is determined uniquely by @ up to a set of measure zero. A Lipschitzian map
®: E —» R™ is called a lipeomorphism if it is injective and the inverse map ¢~ ':
®(E) - R™ is also Lipschitzian. If @ is a lipeomorphism, then det ®#(x) & 0 for
almost all x e E.

Lemma S.1. Let A€ BV and let ®: R™ — R™ be a Lipschitzian map with the
Lipschitzian constant o and such that ® [ A is a lipeomorphism onto a set B < R™.
Furthermore, let 0 be a function on R™ with Sy = B, and let 3 = 0o ® . y,. If
9eBV,(A) then 0e BV.(B), |0], < a”|3],, and |0] <« '||9]. In particular,
Be BV.|B| < a"|A4|, and ||B| < «™'[|A]|.

Proof.Let¥ = (& [ A)~'. The function 0 is nonnegative bounded and measurable
because Sy = B and 0] B = (3[ A)o ¥. As our further argument relies on in-
terpreting functions of bounded variation as normal currents, we shall adopt the
notation of [3, Chapter 4]. Since X = E™| 9 is a normal current, so is ®,(X)
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(see [3, Sections 4.5.7] together with [4, Theorems 1.9 and 1.17], and [3, Section
4.1.14]). It follows from [3, Lemma 4.1.25] that ¢,(X) = E™ | h where h is a function
on R™ defined as follows:

Et—di(ll(m y € B and the fraction is defined ,
h(y) = 4 |det &(¥(y))]
0 otherwise.

As @ [ A is a lipeomorphism, |h| = 0 almost everywhere. Thus letting Y = E™| 0,
we obtain

0], = M(Y) = M(94(X)) < o« M(X) = o"|9],,

[0] = M(¢Y) £ M(0®,(X)) = M(P,(0X) < o™ ! M(6X) = 2™ '||9].
The proof is completed by observing that y, = ygo @ . 4.

Theorem 5.2. Let A € BV, let #: A — R™ be a lipeomorphism, and let f € #(d(A)).
Then f - @ . |det ®| belongs to F(A) and

[3fo@ . |det®| = (3 f-

Proof. Let B = ®(A), and use Kirszbraun’s theorem ([3, Theorem 2.10.43]) to
extend the lipeomorphisms @: 4 — R™ and & ': B —» R™ to Lipschitzian maps
¢: R" — R™ and ¥: R™ > R", respectively. By [11, Lemma 6.5], ® and ¥ are
mutually inverse bijections between cl4 and clB. We let x* = &(x) for each x € cl4
and 0* = 0. ¥ . yp for each 0 e BV, (A). Clearly x = ¥(x*) and 0 = 0* . & . x,,
and it follows from [3, Theorem 3.2.3(2)] that

|0*|, = [50*dA = [, 0]det ®| dA = |0 det @, .
According to Lemma 5.1, B € BV and 0* € BV, (B) for every 0 € BV, (A); moreover,
there are positive constants «, 8, #’, and y, depending only on @, such that:

L. |x* — y*| £ afx — y| for each x, y e cl4;

2. B|6], < |0%|, < B|0], and [|0*| < y]0] for each 0 € BV, (A);

3. ff = o
Choose an ¢ > 0 and find a gage J, in B and a caliber 5 so that

lo(, Q) — [5 /] < ¢/3
for each Q e M1(B, B'¢/(xy); 8, ). Since det @ € L*(R™), there is an ¢ > 0 such that

g < ¢ .

3(|4] + 1) (|det @], + 1)

For each x e cl 4 select an &, > 0 so that ¢,|f(x*)| < &. By [13, Theorem], there
isaset N < cl,A with [N| = 0 and a positive gage d4 in A such that

| |det @(x)] . [0], — |0*[,] < e6],
for each x e ¢cl,4 — N and each 0 € BV, (A4) with x € c1,S,, d(0) < 4(x), and r(6) > «.
In view of Corollary 2.11, we may assume that det &(x) = O for each x e N. Let H
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be the functional from Lemma 4.3 associated with N and ¢’. There is a positive gage d,,
in A such that
|/(x*)] . |0 det @], < H(|0 det @)

for each x € N and each 0 € BV, (A) with x € cl,S, and d(6) < 6,(x).

Since ¥ maps thin sets into thin sets ([2, Lemma 1.8]), 8, = min {84, 6, 65 o ®[ar}
is a gage in A. If P = {(0,, x;), ..., (8,. x,)] belongs to IT(4, &; 64, n/B). it is easy
to verify that Q = {(0, x¥), ..., (05, x))} is in II(B, B's/(xy); 8y, 1), and we obtain

lo(fo® . |det @], P) — [ f] <
< Y 17:3) det ()] -0, = SN 10T] + | S A loF = [ /] =
{;V(XT)I |0, det @], +x§v£""’f(xf)l oy +

+|o(, @) = Ji | < T H(lo,dev@]) + &' 3 |0, + % -

X € xi¢N
= H(|det®| Y 0,) +
x;eN

+¢ [ (Y 0,)dA + £ < ¢|det @], + ¢ + <.
XN 3 3
This completes the proof.
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