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AN INTEGRAL DEFINED BY APPROXIMATING BV PARTITIONS 

OF UNITY 

JAROSLAV KuRZWEiL, Praha, JEAN MAWHiN, Louvain-la-Neuve, 
WASHEK F. PFEFFER*), Davis 

(Received June 15, 1990) 

In the past decade the generalized Riemann integral, introduced by Henstock ([5]) 
and Kurzweil ([9]) some thirty years ago, has been elaborated on extensively in order 
to obtain the divergence theorem for all differentiable (not necessarily continuously) 
vector fields. Among many attempts, only two methods succeeded in defining 
integrals which do not depend on the affine structure of Rm. One, due to Jarník 
and Kurzweil([7], [8], and [l0]), utilizes C1 partitions ofunity to integrate functions 
with compact support defined on Rm\ we shall refer to it as PU integration (PU for 
"partition ofunity"). The other, introduced independently by Pfeffer ([14] and [U]) , 
is based on a more traditional concept ofset partitions. It integrates functions defined 
on bounded BKsubsets ofRm (BVfor "bounded variation" in DeGiorgi's sense); 
we shall refer to it as ßKintegration. * 

The two approaches have complementary merits and shortcomings. The PU 
integrable functions remain PU integrable when multiplied by a C1 function, a fact 
that appears difficult to establish for the 5Kintegral. On the other hand, a function 
which is ßFintegrable in a bounded #Kset A is also ßKintegrable in any BFsubset 
oïA. Thus ßFintegrable functions remain #Kintegrable when multiplied by the 
characteristic function of a BV set. Whether there is a useful class of sets whose 
characteristic functions have the analogous property with respect to all PU integrable 
functions defined in [7] is unclear. The PU integrals o f [8] and [10] have properties 
similar to those ofsingular integrals such as the Cauchy principle value; it follows 
that integrability over a set generally does not imply integrability over a subset, no 
matter how regular it is. 

In the present paper, we combine the distinct ideas from the definitions ofthe PU 
and #Kintegrals by employing #Fparti t ions of unity. The resulting integral is co­
ordinate free, integrates the divergence ofdifTerentiable vector fields, and enjoys the 
merits ofboth the PU and BKintegrais. Specifically, integrable functionsin a bounded 

*) The work of this author was partially supported by the University of Louvain in Louvain-
Ia-Neuve, Belgium. 
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BVset A remain integrable when restricted to a BKsubset of A, as well as when 
multiplied by a Lipschitzian function — a better multiplication property than that 
of the PU integrals. A strong form of Cousin's lemma (Lemma 1.2), facilitated by 
ideas of Besicovitch ([1]) and works ofHoward ([6]) and Pfeffer ([l2]), is the basis 
ofour definition. 

The paper is organized into four sections. After we establish the notation and 
terminoloy (Section 1), the integral is introduced in Section 2. There we prove its 
basic properties including that of multiplication by Lipschitzian functions. We also 
prove a new type of convergence theorem (Theorem 3.tl) which implies that the 
integral can be interpreted as a distribution. A very general divergence theorem for 
almost difTerentiable vector fields with substantial singular sets is proved in Section 3. 
Section 4 si devoted to the proof of coordinate independence. We use a recent 
result of Pfeffer ([l3]) to show that the integral is invariant with respect to lipeo-
morphic (i.e., bi-Lipschitzian) changes ofcoordinates. 

1. PRELIMINARIES 

Throughout this paper, m ^ 1 is a fixed integer. The set of all real numbers is 
denoted by 7?, and the m-fold Cartesian product of R is denoted by Rm. For x = 
= ( i l 5 ...,£„,) and y = (ř/i, . . . , rçJ і п і Г and г ^ 0, let x.y = Çlrjl + .. . + çmnm, 
\x\ = yJ(x . x), and U(x, s) = {yeR"1: \x - y\ < s}. If E c Rm, then d(E), cl £, 
i n t £ and b d £ denote, respectively, the diameter, closure, interior and boundary 
ofE. 

All functions and functionals considered in this paper are real-valued. I f / is 
a function on a set A and B c A, we denote b y / [ B the restriction o f / t o B; when 
no confusion can arise we write/instead of/ [ B. The algebraic and lattice operations 
as well as convergence among functions on the same set are defined pointwise; in 
particular, this applies to sequences of real numbers. Given a function Ѳ on Rm, 
we set Se = {xeRm: Ѳ(х) ф 0} and let d(9) = d(Se). The characteristic function 
of a set E c Rm is denoted by / £ . 

A measure is always an outer measure. The Lebesgue measure in Rm is denoted 
by X, however, for E c Rm we usually write \E\ instead of A(E). The (m — l)-
dimensional HausdorfT measure Ж in Rm is defined so that it is the counting measure 
if m = 1, and agrees with the Lebesgue measure in Rml if m > 1. A thin set is 
a subset ofJ?m whose Ж measure is cr-finite. The symbol j signifies that we are using 
the Lebesgue integral (with respect to Я, Ж, or any other measure, as the case may 
be); the new integral introduced in Section 2 will be denoted by J*. Unless specified 
otherwise, the terms tťmeasure", í tmeasurable ,\ "Lebesgue integrable", "almost all" 
and "almost everywhere", refer to the measure A. For 1 g p ^ oo, the measure A 
is also used to define the space L?(Rm) whose norm is denoted by | • |p. 

Let E cz J?m. We say that an x e Rm is, respectively, a dispersion or density point 
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of E whenever 

r . J E n t f ( x , e ) | n r \(Rm-E)nU(x,s)\ _ lim inf' — - 1 = 0 or lim sup '-— — - -1 = 0 . 
г-0+ (2e)m e^0+ (2s)m 

The set ofall density points o f£ is called the essential interior or E, denoted by int£, E, 
and the set ofall nondispersion points o f £ is called the essential closure of E, denoted 
by c\eE. The essential boundary of E is the set bdeE = cleE — int t ,£. Clearly 
int E c inte E cz c\e E cz cl £, and so bdť E cz bd £. If cl E — clt, E is a thin set, 
the set E is called solid. 

We say that 0eLl(Rm) is of bounded variation if its distributional gradient D6 
is a vector-valued Borel measure in Rm whose variation |D0| is finite; we set ||0|| = 
= |/>0| (Rm) and call it the variation of 0. For the basic properties of functions of 
bounded variation we refer to [4] and [19]. In particular, it is shown in [4, Section 
1.30] that a function 0 є Ü(R) is of bounded variation if and only if there is a func­
tion i9 on R equal to 0 almost everywhere and such that the classical variation of ,9 
on each compact interval K cz R is finite and bounded by a constant independent 
ofK. 

By BV+ we denote the family ofall nonnegative functions 0 of bounded variation 
for which 0 and Se are bounded. The regularity of 0 є BV+ is the number 

( J ik__ if j(0)[i0|i > o , 
r(0) = |d(0) | |0 | | V ' " " 

[ 0 otherwise. 

The family of all sets A c Rm whose characteristic function Хл belongs to BV+ is 
denoted by BV. For A e ßKwe write \A\ and r(A) instead of [|/̂ [[ and r(yA), respec­
tively. If E cz Rm we denote by BV+(E) and BVE the families of all OeBV+ with 
Se cz E and all A є ßKwith A cz E, respectively. 

Let A e BV. The number ||Л|| is called the perimeter of A; by [3, Section 2.10.6 
and Theorem 4.5.11], ||Л|| = Jť(bdeA).There is a Borel vector field nA on tfw, 
called the Eederer exterior normal ofA7 such that 

JV(B n bde A) = JB \nA\ dJť and \A div v dÀ = JbdA y . ŵ  d ^ 

for every J^-measurable set B cz Rm and every vector field v continuously differen-
tiable in a neighborhood ofcl A (see [3, Chapter 4]). An x eRm is called a perimeter 
dispersion point ofA whenever 

r Jť[bdeAnU(x,s)l . 
lim —î=— u = 0 . 

г-о+ (2г) т _ 1 

The set ofall x є inte A which are perimeter dispersion points of^ is called the critical 
interior ofA, denoted by intc A. According to [18, Section 4], Jf(inte A — intc A) — 
= 0. 

Again, let A є BV. A partition in A is a collection (possibly empty) P — 
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= {(Au Xi), ..., (Ap, Xp)} where Aí9 ..., Ap are disjoint sets from BK^and x,- e cle Ah 

i = 1, ..., p; the set Uf=i Ai is called the body of P, denoted by U^- A pseudo-
partition in Л is a collection (possibly empty) Q = {(0!,Xi),...,(op,Xp)} where 
0j , ..., 0pare functions from BV+(A) with £ f s , 0, ^ / л and x,- є cle Se., i = 1, ..., p; 
the function £ ? = J 0t is called the òorfy of g, denoted by £ Q. If P = {(^i , *i) , . . . 
. . . , (Лр ,хр)} is a partition in A, then ß = {Ou,* i ) , . . . , (b i , ,Xp)} is a pseudo-
partion in Л and £ ß = Xup-

A caliber is any sequence A/ = {f/y} of positive numbers. A gage in E cz Rm is 
a nonnegative function č defined on cle E whose null set Nô = {x e cle E: o(x) = 0} 
is thin. 

Definition 1.1. Let e > 0, let n be a caliber, and let ö be a gage in A є ßK We say 
that a pseudopartition P = {(Ѳ1, x t ) , ..., (0p, xp)} in A is: 

1. E-regular ifr(0,) > e, / = 1, ..., p; 
2. 6-fineiid{e) < S(xt)9 i = 1, . . . , p ; 
3. (e,n)-approximating if / л — £ P = £ j= i £y where g{, ...9Qk are functions 

from BV+(A) with | |^| | < l/e and |#,.|, < ^,,jr = 1, ..., fc. 
A partition {(Ai, Xj), ..., (Ap, xp)} in Л is called s-regular, ö-fine, or (e, n)-approxi-
mating whenever the pseudopartition {(#A,>*i)>->(XAp>*p)} ^s e-regular, č-fine, 
or (e, f7)-appr0ximating, respectively. 

In this pseudopartitions rather than partitions will play a key role. The family of 
all e-regular č-fine (г, f/)-approximating pseudopartitions in A є BV is denoted by 
Tl(A, e; S, rj). The existence of e-regular 5-fine (e, ^)-approximating partitions in 
^e#Fes t ab l i shed in [12, Proposition 2.5] yields the following existence result for 
pseudopartitions. 

Lemma 1.2. Let ô be a gage in A e BVand let n be a caliber. There is a x > 0, 
depending only on the dimension m, such that П(А, e; ô, n) Ф $for each positive 
e ^ x. 

2. THE INTEGRAL 

Let A є BV and let / be a function on cle A. If G is a functional (of any kind) 
on BV+(A), we set 

aV,P;G) = tf(*d<K0i) 
i = i 

for each pseudopartition P = {(0j, xx), ..., (0p, xp)} in A. 
Definition 2.1. Let A є jBF and let G be a functional on BV+(A). We say that 

a function/on cle A is G-integrable in Л ifthere is a real number/ with the following 
property: given є > 0, we can find a gage ô in A and a caliber n so that |cr(/, A; G) — 
— l\ < e for each P є П(А, e; £, rç). 

The family ofall G-integrable functions in A is denoted by <f(A; G). It follows from 
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Lemma 1.2 that the number / in Definition 2.1 is determined uniquely b y / є <f(A; G). 
We call it the G-integral o f /ove r A, denoted by j * / d G . 

In the present paper we shall deal predominantly with the situation where G(0) = 
= \A Ѳ d/ for each Ѳ є BV+. In this case we simplify the notation by writing a(f, P), 
J{A), and j * / instead of a(f, P; G), J(A; G), and J * / d G , respectively. Similarly, 
we say integrable and integral instead of G-integrable and G-integral, respectively. 
It follows easily from [12, Corollary 3.4] that the tight variational integral of 
[11, Remark 5.2, 4(a)] is an extension ofthe integral we havejust defined. 

Proposition 2.2. Let A є BVand let G be a functional on BV+(A). Then */(A; G) 
is a linear space and the mapfh^ J * / d G is a linearfunctional on У(А; G), which 
is nonnegative whenever G is. 

This proposition follows directly from Definition 2.1. The routine proof of the 
following Cauchy test for integrability is left to the reader. 

Lemma 2.3. Let A є BV and let G be a functional on BV+(A). A function f on 
c\e A is G-integrable in A whenever given s > 0, there is a gage 6 in A and a caliber n 
such that \o(f, P; G) - cr(f, Q; G)| < efor each P and Q in П(А, s; S, n). 

Let A e BV. A division ofA is a finite disjoint subfamily ofBVA whose union is A. 
A function F on BVA is called 

(i) additive if F(A) = £ D e ^ F(D) f ° r e a c n division Q) of A; 
(ii) continuous if given s > 0 there is a v > 0 such that |F(B)| < г for each 

BeBVA with ||B|| < l/e and |# | < v. 

Proposition 2.4. Let A e BV, let G be afunctional on BV+(A), and letfe J{A\ G). 
Then thefollowing holds: 

1. The restrictionfB =f[c\eB belongs to y(B;G)for each BeBVAi and the 
map B ĥ - j ß / ß dG is an additive continuousfunction on BVA. 

2. Given s > 0, there is a gage ô in A such that 

I|/(*/)G(xx,)-tf,/dG|<e 
/ = 1 

for each s-regular ô-fine partition {(Al, xx), ..., (Ap, xp)} in A. 
The proofs of parts 1 and 2 are completely analogous to those of [12, Proposition 

3.2] and the "only if" part of [12, Theorem 3.3]. 

Proposition 2.5. Let A є BV, let G be afunctional on BV+(A), and letfbe afunction 
on c\e A. Suppose that Q) is a division ofA such thatf is G-integrable in each D e @. 
lfQ) consists ofsolid sets, thenfis G-integrable in A. 

Proof. Choose an e > 0 with ||/)| | < l/г for each De@. If n is the number of 
elements in Q), find gages öD in D e @ and a caliber n so that 

K/,e;c) -J*/dG|<* 
n 
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for each Q є n(D, г/2; ôD, n). Since the sets from $} are disjoint and solid, we may 
assume that SD(x) = 0 for each x є c\e D which belongs to cl E for some E є Q) 
different from D; indeed, 

de D n cl E = (inte D u bde D) n cl E c (cl £ - cle £) u bdc D 

is a thin set since Ж(Ъае D) < + oo. In view of this, we may further assume that 
U(x, SD(x)) n E = 0 for each x є c\e D and E e Q) different from D. Now it is clear 
that setting S(x) = öD(x) whenever x e c\e D for some D e Q) defines a gage ô in A. 

Let Pen(A,e;o,r]), and for De9 let PD = {e,x)eP:xec\eD}. It follows 
from the definition of ô that PD is an г-regular £D-fine pseudopartition in D and 
^ = Uz>eo^V There are functions Qu...,gk in BV+(A) such that | |oJ < l/e, 
|^.|, < rçy, and Xî=i <?; = /л - Z R S i n c e 

k 

Xo - E PD = Хо{Хл - Z P ) = Z ^D ŷ 
У = 1 

where WxoQjW й \\D\\ + ||e,.|| < 2/e, and | ^ d ^ |^.|j < rç,- fory = 1 , k, we see 
that PD є n(D, г/2; čD, rç) for each D є ^ . Consequently 

K / . p ; G ) - Z J"o/dG| ^ X K / , PD; G) - [ * / d C | < Б , 
DeQ De@ 

and the G-integrability o f / i n Л is established. 

Remark 2.6. We shall see later (Remark 4.5) that Proposition 2.5 is false ifa member 
oîQ) is not solid. This deficiency in additivity can be easily removed by extending the 
integral along the lines described in [11, Sections 8 and 9]. 

Lemma 2.7. Let AeBVand let g be a Lebesgue integrablefunction on c\eA. 
Given s > 0, there is a positive gage ô in A such that 

Ì\g(x,)iAe,dX-fAge,àX\<B 
Í = 1 

for each ô-fine pseudopartition {(Ѳ1, xt), ..., (Ѳр, xp)} in A. 
This lemma is a special case of [13, Lemma 2]. 

Lemma 2.8. Let AeBVand let g be a Lebesgue integrablefunction on c\eA. 
Given s > 0, there is an n > 0 such that \A \дѲ\ âÀ < г for each Ѳ є BV+(A) with 
|0 |^ й i|eand]0l <f|. 

Proof. Ifthe lemma is false, there is an г > 0 such that for n = 1, 2, ... , we can 
find ѲпеВѴ+(А) with |flJ^ й l/e, |ви|і < 2~\ and ]Á \g0n\ cü ^ г. Letting 0 -
= lim sup 0/p it is easy to verify that §A Ѳ âÀ = 0 and \A \дѲ\ dA ^ г, a contradiction. 

Proposition 2.9. Let A є BV, let g a Lebesgue integrablefunction on c\eA, and 
let G(e) = \A дѲ âÀfor each Ѳ є BV+(A). Afunction f on cle A is G-integrable in A 
ifand only iffg is integrable in A, in which case J * / d G = j * / # . 

Proof. Choose an г > 0 and for n = 1, 2, . . . , find positive functions 6n on cle A 
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so that 

f|0(.v,)kMA-ix0MA|<^;, 
i = i n 2 

for every ^,,-fine pseudopartition {(0i ,Xi) , . . . , (0p ,xp)} in Л (see Lemma 2.7). If 
£„ = {xec\eA: n — 1 ^ | / (* ) | < л}? w = 1> 2, ..., then с1еЛ is the disjoint union 
of the £„'s. Given x e c\e A, let S(x) = S„(x) if x є En. if ß - {(3,, >•,), • • -, (Sf, yq)} 
is an č-fine pseudopartition in A, then 

K/i7, Є) - <K/, ß ; G)| á І | / (v , ) | |0fo) j b Ö, dA - \A g9j dÄ\ è 
J = 1 

й І I |/(.V;)I ]g(yj) іл 9j dX - U g9j d/ | < £ л ^ = г , 
/i= 1 у ,е£м л = 1 П 1 

and the proposition follows. 

Proposition 2.10. Let А є BVand let g be a Lebesgue integrablefunction on cle A. 
Then g є S(A) and J* # = j ^ # dA. 

Proof. Let G(0) = k 0 0 d A for each 0єВК + (Л) and l e t / = /с1еЛ. In view of 
Proposition 2.9, it suffices to show that fe J{A\ G) and j"*/dG = JA g dA. Hence 
choose an £ > 0 and use Lemma 2.8 to find rjj9 j = 1, 2, ... , so that \A \дѲ\ dX < 
< e2~j for each Ѳе BV+(A) with |0, |^ <g 1 and |0_,.|, < rçy. Let rç = {rjj} and select 
an (e, ^)-approximating pseudopartition P = {(0ls Xj), ..., (0p, xp)} in A. There are 
Ql9 ...9Qk in ЯК+(Л) such that | ^ | j < rjj, j = 1, ..., k, and £ J = 1 0/ = Хл ~ X ^ 
It follows that 

K/, P; G) - | л éf dA| й U IX ^ - l| kl dA = 
- ib |OTy |dA<ff i2^<e 

i = i i = i 

and the proof is completed. 

Corollary 2.11. Let A є BV, and letf and g befunctions on c\e A which are equal 
almost everywhere. Thenfe J^{A) ifand only ifg e ^(A), in which case J * / = j * g. 

Remark 2.12. In view of the Corollary 2.11, we shall extend the definition of in-
tegrabiity in A є BVto all functions defined almost everywhere in clt, A, in particular, 
to all functions on A. Since the tight variational integral of [11, Remark 5.2, 4(a)] 
extends the integral defined in this paper, [11, Corollary 5.12] implies that all 
integrable functions are measurable, it follows that the integral enjoys properties 
identical to those stated in [11, Corollary 5.14]. 

3. MULTIPLICATIVE PROPERTIES OF INTEGRABLE FUNCTIONS 

For 1 ^ p ^ oo, the Sobolev space WUp(Rm) consists of all functions g є U(Rm) 
such that the distributional gradient Dg ofg is a vector field on Rm whose norm \Dg\ 
belongs to Lp(Rm); the LP norm of \Dg\ is denoted by \\Dg\\p. We note that each 
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ge Wí,l(Rm) is a function of bounded variation with ||<7|| = [jẐ >̂ [| 1 - For thebasic 
results about the Sobolev spaces we refer to [1.9, Chapter 2]. 

Let geLl(Rm) be a locally Lipschitzian function. By StepanofTs theorem ([3, 
Theorem 3.1.9]), the usual gradient ofg is defined almost everywhere in Rm, and it 
follows from [3, Theorem 4.5.6, (5)] that it is equal to the distributional gradient Dg 
ofg. Thus g is ofbounded variation ifand only ifDg є Lf(R"), in which case [|g| = 
= jR„\Dg\âL 

Lemma 3.1. Let g є Ü(Rm) be a bounded function of bounded variation. Then 
there is a sequence {gn} in WXA(Rm) of locally Lipschitzianfunctionsfor which 
lim \gn - g\x = 0, lim \gn\ = \\g\\, and \gn\^ ^ \g\^for n = 1,2, . . . . 

Proof. By [4, Theorem 1.17] there is a sequence {un} in U(R*") ofcontinuously 
differentiable functions with lim \u„ — g\i = 0 and lim |ми|| = ||g||. For n = 
= 1 ,2 , . . . , let 

vn = max {min {un9 | # | ^} , - | # L } . 

Then each vn is a locally Lipschitzian function in L}(Rm) such that \vn\^ ^ \g\^ and 
\Dvn\ й \Dun\- Hence \\v„\\ ^ | w J , and it is not difficult to verify that lim \vn — g\t = 
= 0. By [4, Theorem 1.9], 

||0|| ^ lim inf[|^[| S l i m l ^ | = [|<7|| 

and it suffices to select a subsequence {g„} oi{vn} so that lim [|#n|| = lim inf §vn\\. 

Corollary 3.2. / / g, 0 є U(Rm) are bounded functions of bounded variation, then 
so is дѲ and 

ИІ á Ы • И. + и • И. • 
Proof. Let {gn} and {Ѳп} be, respectively, sequences of locally Lipschitzian 

functions associated to g and 0 according to Lemma 3.1. Since 

| M „ | | = Í«-« \D(gA)\ dA а U- \D9n\ • К] dX + 

+ ÍR-. \DBn\. \gn\ àX й \\g„\ - | в | . + Щ . \g„U 

and lim \gn0n — #0|, = 0, the corollary follows from [4, Theorem 1.9]. 

Lemma 3.3. Let g be a bounded nonnegativefunction in Ll(Rm), and let 0 є BV+. 
1. / / m — 1 and g is of bounded variation, then дѲ є BV+ and \\дѲ\\ ^ 

^ И (W- + M)-
2. If m > 1 and g є Wl'm{R% then дѲ є BV+ and Щ] Í Щ (\g\œ + e^Dg\\m) 

where c > 0 is a constant depending only the dimension m. 
Proof. Ifw = 1 then |o|oo ^ ||0||, and it suffices to apply Corollary 3.2. Ifm > 1, 

let {0„} be a sequence of locally Lipschitzian functions associated to 0 according 
to Lemma 3.1. The Hölder and Sobolev inequalities yield 

\gen\\=\Rm\Den\.\g\âl + \Rm\en\.\Dg\àku 
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й \\0„\\ . \g\a + (Je,., ťC/(«-»)(-»/- . (Jem | D í | « ) . / - <£ 

s K i ( | f l r U + c j D e P 

where c > 0 is a constant depending only on w ([4, Theorem 1.28]). The lemma 
follows from [4, Theorem 1.9]. 

The proofofthe next theorem is modeled on that of [8, Theorem 4. l ] . It utilizes 
in an essential way that the integral has been defined by means of pseudopartitions 
rather than partitions (as in [11, Definition 7.3] or [12, Definition 3.1]). 

Theorem 3.4. Let A є BVJe J(A), and let g e L{(Rm) be bounded. Thenf. (g[deA) 
belongs to ^f{A) whenever either m = 1 and g is of bounded variation, or m > 1 
and geWUm{Rm). 

Proof. Let g e Ü(Rm) satisfy the assumptions ofthe theorem. Since У(А) contains 
constants and the integral is a linear functional on ^(A), we may assume that 
1/3 ^ g(x) 5g 2/3 for xeclA. It follows from Lemma 3.3 that if 0 belongs to 
BV+(A), so do дѲ and (1 — g) 0; moreover 

m a x { | H | , | | ( l -9)Ѳ\}^-\в\ and 

min {r(g0), r((l - g) 0)} ^ ß r(0) 

for a sufficiently small positive constant ß ^ 1 independent of 0. 
Setting G(0) - \A дѲ dX for each Ѳ є BV+(A), it suffices to show thatfeS(A; G) 

(see Proposition 2.9). To this purpose, choose s > 0 and find a gage ô in A and 
a caliber rj so that |cr(/, R) - J * / | < г/2 for each R є П(А, ße/2; Ô, 2n). Let P = 

= {(0!,xO,... ,(0,>*p)} a n d Q = №і>Уі)>-Л9ш>Ущ)} be in n(A,e;S,rj), which 
is a subset of n(A, ßz\2\ ô, 2n). The collection 

s = { (00 i , * , ) , . . . , ( 00 , , * , ) , ( [ i - e ] 9,,j>,), - , ( [ i - g] 9,,y,)} 

is a (ßs)-regular ó-fine pseudopartition in A. Assuming that Sen(A,ßej2\o,2n), 
we obtain 

H/, P; G) - ff(/, ß; G)| = | £/(*,) Ĵ  ff0, dA + 
t' = 1 

+ .Z / (v , ) Ь (1 - ^) ^ dA - I / W U Sj dA| = 

= V ( / , 5) - < Л ß ) | g [<7(/s) - П / | + | J * / - a{f, Q)\ < s, 

and the theorem follows from Lemma 2.3. Thus it suffices to show that the pseudo-
partition S in A is (ßs/2, 2^)-approximating. 

Therearefunctions£b ..., gfcandT l5 ..., rfcin BV+(A) suchthatmax {||gy||, ||ту[|} < 
< I/e, max {|e,.|,, |TydJ < ř/y,7 = 1, ••-, fc, and 

z* = I * + b , - Z Q + b , . 
y = i ; = i 

From this we see that S is indeed a (ße/2, 2r/)-approximating pseudopartition in A, 
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since 
/.л - Z S = д(Хл - I P) + (1 - д)(хл ~ I Q) = 

к 

= lidQj + (l -0)*jl 
j = i 

where 

|9Qj + (l-9)hi^-AlM + hA)<- and 
ß zß 

\gQj + ( 1 - g)Tj\\ á \Qj\ì + Ы і < 2rij fór j = 1 , . . . , fc. 

Remark 3.5. A multiplier is a function g on Л т such that for each A e BKand each 
feJ(A) the function f.(g[c\cA) belongs to <#(A). Using Theorem 3.4 and the 
technique ofSargent (see [17, Section 3]), it is easy to show that a function g on R 
is a multiplier ifand only ifit is ofbounded variation. 

Question 3.6. What are the multipliers for m > 1? In particular, is each function 
ofbounded variation a multiplier even when m > 1? 

Corollary 3.7. Assume that m = 1 and A = [a, b\. LetfeJ(A), and let F(x) = 
— J[*.jc]//ör each * e A. Ifg is afunction of bounded variation on R, then 

І*лГд = Hb) 9(b) - F(a) g{a) - \A F ág 

where §AFdg is the classical Riemann-Stieltjes integral. 

Proof. By Theorem 3A,fgeJ^(A), and by [11, Proposition 6.8, 1], the integral 
j * / # has the same value as the Denjoy-Perron integral offg. Thus the corollary 
follows from the integration by parts theorem for the Denjoy-Perron integral ([16, 
Chapter 8, Theorem (2.5)]). 

Corollary 3.8. Let A e BV and fe ^(A). If g is a Lipschitzian function on c\cA 
then fg e <^(A). 

Proof. The function g is bounded because A is bounded. By Kirszbraun's theorem 
([3, Theorem 2.10.46]), g can be extended to a Lipschitzian function in Rm, still 
denoted by g, which may be further assumed to have a compact support. Thus 
g є Wl,co and the corollary follows from Theorem 3.4. 

Theorem 3.9. Let A є BV,fe У(А), and let {gn} be a sequence in L](Rm) such that 
sup \g„\^ < +°o and lim gn = 0 uniformly almost everywhere in A. Suppose that 
either of thefollowing conditions holds: 

1. m = 1, each gn is of bounded variation, and sup §gn\\ < +00; 
2. m > 1, each gn belongs to WUm(Rm), and sup [|ß#„||m < +00. 

If K = 0*[cl<A thenfhn e J(A), n = 1, 2, . . . , and lim }*//i„ = 0. 

Proof. In view of Proposition 2.2, we may assume that 0 ^ gn ^ 1/2 for n = 
= 1, 2, . . . . It follows from our assumptions and Lemma 3.3 that if Ѳ belongs to 
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BV+(A), so do дпѲ and (1 — gn) Ѳ; moreover 

max {||<7,,0i|, |(1 - gn) 0||} S MIß and r((l - g„) Ѳ) ^ ß r(0) 

where ß ^ 1 is a positive sufficiently small constant independent ofn and 0. 
Let Gn(0) = |л #„# d^ for each Ѳ e BV+(A) and n = 1, 2, ... . Then / є J(A, Gn) 

by Theorem 3.4 and Proposition 2.9, and it suffices to show that lim j*fdGn = 0. 
To this end, choose a positive e < min {x, l/||4|]} where x is the constant from 
Lemma 1.2. Find gages ô, S(n) in A and calibers ř/, rç(n) so that 

K / ^ ) - i * / | < e / 3 and \a(f,Q;Gn)-S*AfdGn\<el3 

for each Pen(A4ß8;ö,rj) and б є Я ( Л , е ; ^ ( п , , ^ ) ) . With no loss ofgenerality, 
we may assume that ô(n) ^ 3 and ^ n ) g (1 + 7,,)>7y+i for nJ = 1, 2, ...,y,, being 
the essential supremum of gn in v4. Fix an integer n ^ 1 with y„\A\ < rjl, and 
use Lemma 1.2 to find a 6 = { ( * i , 3 ' i ) , . . . , ( ^ , ^ ) } in П(А,є;о(п\п{п)). Then 

^ = { ( [ l - ^ ] ^ , y O , . . . , ( [ l -gn]^yq)} 

is a (^)-regular č-fine pseudopartition in A. There are £>,, ..., £>* in BV+(A) such that 
Ы І < l/e, |e, | , < # \ and X5=i Qj = Z4 - І Є - Hence 

fc 

ІА - Z P = #„*л + 0 - Gn) (Хл - Z Ô) = 0nZx + Z ( l - SU 0y 
J= ! 

where ||<7,,^|| ^ ||л||/0 < i|(fie) and ^ | , ^ yn\A\ < rli together with 

| | ( l - ^ ) C ; l a % f i < ^ and 
ß y8e 

|(l - 9n)Qj{, é (I + y„)\Qj\, < (I + 7.)чУ° й 4j+i 

fory = 1, ..., k. From this we conclude that Pe FT(A, ße; S, tj). Consequently 

in/dG.|s|j:/dG.-^,e;G.)| + 

+ I Íf(yj) ÍA h Ы - tf(yj) іл (t - 9„) 9j dX\ < 
j = l j = \ 

< e/3 + 14/, Q) - \*f\ + If*/ - <r{f, P)\ < г, 
and the theorem is proved. 

A sequence {gn} ofLipschitzian functions on a set E cz Rm is called equilipschitzian 
whenever the Lipschitzian constants ofthe g„s have a common bound. 

Lemma 3.10. Let A є BV, \A\ > 0, and let [hn] be an equilipschitzian sequence 
offunctions on c\eA. If lim \A \hn\ dk = 0 then lim hn = 0 uniformly. 

Proof. Note that each hn has a unique extension, still denoted by hnf to the compact 
set C = cl(clt,4). Let a > 0 be а common bound for the Lipschitzian constants of 
the hn's. Proceeding towards a contradiction, suppose there is a y > 0 such that for 
n = 1, 2, ... , we can find a zn e C with |A„(zw)| > 3y. Passing to a subsequence, we 
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may assume that \zn — z\ < y|oc for some z є C and all n. It follows that 

|йя(*)| è \K(zn)\ - a K - x\ > 3У - a K - z\ - a |z - x\ > 
> 2y — ot\z — x\ 

for each x e C and n = 1, 2, ... . Now if U = C/(z, y/a), then 

i |йи| dA ^ f (2y - a Л dA = y\.Á n tf| > 0 
jA jAnu\ a / 

for all A?, a contradiction. 

Corollary 3.11. Let AeBV,feJt(A), and let {hn} be an equilipschitzian sequence 
offunctions on cleA. If lim | л \h„\ âÀ = 0 then lim j*fhn = 0. 

Proof. Avoiding triviality, assume that |^ | > 0. Using Kirszbraun's theorem 
([3, Theorem 2.10.46]), each hn can be extended to a Lipschitzian function gn on Rm 

such that gn has a compact support , \дп\^ й sup{\h„(x)\:xec\eA}, and the 
Lipschitzian constant of gn is less than or equal to the Lipschitzian constant of hn. 
In view ofthis, the corollary follows from Theorem 3.9. 

Corollary 3.12. Let A e BV and fe J(A). If Ф(д) = $*fg for each rapidly de­
creasing C00 function g on Rm, then Ф is a tempered distribution of order at most 
one whose support is contained in сЫ. 

4. THE DIVERGENCE THEOREM 

L e t / be a function defined on a set E c Rm. We define the differentiability of / 
at x є int E in the usual way (see [15, Definition 7.22]). Thus differentiability implies 
continuity and the existence of partial derivatives, which need not be continuous. 
For i = 1, ..., m, the /-th partial derivative o f / is denoted by dLf\ and if v = 
— (/i> '--,fm) *s a differentiable vector field, we set div v = Yj=\ ^ifi- ^X ls a ^ ея -
surable subset o f £ , we say t h a t / is differentiable on X whenever/can be extended 
to a function g such that the domain ofg is a neighborhood o fZ and g is differentiable 
at each x є X. Given such an extension g and x є X, we set dJ(x) = д(д(х) for / = 
= 1, ..., m. Up to a set of measure zero, thus defined functions cJ on X do not 
depend on the choice of# (see [11, Lemma 5.16]). 

Let 9eBV+. Then D0 = (ри ..., ßm) where fil9 ..., ^/n are signed Borel measures 
in Rm whose support is contained in cl50, and ju, = \D0\ is a finite positive Borel 
measure in Rm whose support is also contained in c\SQ. On a Borel set E cz Яш, 
l e t / a n d y = (/ , , ...,/„,) be, respectively, a Borel function and a Borel vector field. 
If cl5, c= E, we write J£ / |Dfl | or J E / (x) |D 0(x)| and J£ v . D0 or J£ v(x) . D 0(x) 
instead of J £ / d ^ and ^Г=і І я Л Ф / * respectively; in this notation, ||0j| = j £ |D0|. 
It follows from [3, Chapter 4] that 

UV-D*A = -\ъеА^ПАаЖ 
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for each А є ßKwith clA c E. If w is a C00 vector field in Rm, the definition of the 
distributional gradient D0 implies the formula 

jEw . D9 = - j s 0 d i v vvdA 

to which we shall refer as the integration by parts. 

Lemma 4.1. Let v be a bounded vectorfield defined on a set E c= Rm which is 
differentiable at x є int E. Given s > 0, there is a Ô > 0 such that 

|div*(x)|0|, +$c]Sov.D0\ < e | 0 | , 

for each ѲеВѴ+ for which xec\Se, d(0) < ô, r(0) > e, c\Se a £, and v\c\S0 

is Bore]. 
Proof. For each yeRm let w(y) = v(x) + Dv(x)(y — x) where Dv(x) is the 

differential of v at x. Then div w(y) = div v(x) for every y e Rm, and there is a function 
h on £ such that \\my_x h(y) = 0 and |y(>') — w(j)| S h(y) \x — >'| for all ye E. 
Given £ > 0, choose a S > 0 so that h(y) < s2 whenever у є E n clC/(x, č). Let 
0 є ßK+ be such that B = c\Se is a subset of £, x є ß, d(0) < ö, r(0) > e, and y [ ß 
is Borel. integrating by parts, we obtain 

|div v(x) |0|, + JB v . D0\ = |JB 0 div w dA + J e и . D0| = 

= \ШУ) - "O0] • D Ѳ(у)\ й U \ѵ(у) - w(y)\ . \D Ѳ(у)\ S 

й Ss h(y) \x - y\ . \D Ѳ(у)\ й e2 d(e) ||0|| < e|0|, . 

Lemma 4.2. Let A e BVand let v be a continuous vectorfield in сЫ. Given e > 0, 
there is an ц > 0 such that |JcM y . D0| < £ /o r each 0eBV+(A) with ||0|| < l/e 
and |0|, < rç. 

Proof. Since сЫ is a compact set, there is a C00 vector field w in Rm so that 
|y(x) — w(x)| < £2/2 for each х е с Ы . Let y = supV6cM |divw(x)| and rç = e/(2y). 
Given 0 є ßK+(^) with ||0|| < l/fi and |0| t < n, the integration by parts yields 

\$c]Av.D0\ uUiA\v-*\.\De\ + 

+ J c M | 0 d i v w | d 2 < ~ | | 0 | | + y|0|, < £ . 

Lemma 4.3. IfN c Rm has measure zero and e > 0, there is a nonnegative linear 
functional H on L*(R"1) having thefollowing properties: 

1. |H(0)| й ef0|o>/3 /o r елей 0 є Г ° ( і Г ) . 
2. G/üew x є N яия? яя integer n ^ 1, řfrere /s а с) > 0 such that Я(Ѳ) ^ (п/fi) |0^ 

/o r еясй nonnegative 0 є L°°(tfm) w/f/? S0 c L/(x, č). 
Proof. Find a decreasing sequence {Un} ofopen sets containing N so that \U„\ < 

< £23 *1 2~" for n = 1, 2 , . . . , and let fi(E) = £п°°= i ß"1 |£ n C/,J for each E c i?m. Then ^ 
is a measure in Аш and ^(^m) ^ e /3- So the nonnegative linear functional H: 0h^ 
h^ JKm 0 d/̂  on L°(Rm) satisfies the first condition of the lemma. Given x є N and an 
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integer n ^ 1, there is a Ô > 0 such that U(x, S) c Un. It follows that tf(0) ^ 
^ г _ 1и J ^ 0 d A = е~1п\Ѳ\1 for each nonnegative 0GL°°(Äm) with Se a U(x, 5). 

Let v be a vector fieîd defined on a set E с Л т . We say that u is almost differentiable 
at x є int £ if 

k(>0 — ФОІ 
hm sup ' v ; -y < +oo . 

y^x \y — X| 
IfJi is a measurable subset ofE, we say that v is almost differentiable on X whenever v 
can be extended to a vector field w such that the domain of w is a neighborhood 
of X and w is almost difTerentiable at each x є X. By StepanoflHs theorem ([3, 
Theorem 3.1.9]), w is difTerentiable almost everywhere in X, and by [11, Lemma 
5.16], almost everywhere in X, div vv is determined uniquely by v. In view of this, 
we let div v(x) = div w(x) for each x є X at which w is differentiable. 

Recall that a thin set is a subset ofRm whose Ж measure is er-finite. 

Theorem 4.4. Let A є BVand let T be a thin set. Suppose that v is a continuous 
vector field on c\A which is almost differentiable on c\eA — T. Then div v is 
integrable in A and 

Í* d i v v = ibd^ v . nA аЖ . 
Proof. By our assumptions, v is extendable to a vector field w such that w is 

defined on a set E whose interior contains cl̂ A — T and w is almost differentiable 
at every x e deA — T. Let C = dA. Since w [ C = v is continuous, we have 

Jbdx » . nA аЖ = $bdA w . nA аЖ = - J c vv . О/,, . 

By StepanofTs theorem ([3, Theorem 3.1.9]), there is a set N a deA — Tsuch that 
|Ar| = 0 and w is differentiable in deA — ( T u N). In view ofCorollary 2.1t, we may 
extend div vv to deA by zero. 

Choose an г > 0, and let H be the functional from Lemma 4.3 associated with N 
and г/3. If x є N there is an integer n ^ 1 and òx > 0 such that 

|vv(v) - w(x)| й n\y - x\ and Я(0) Ž - |0|, 
є 

for each y e U(x, ôx) and each 0 є BV+(A) with Se a U(x, ôx). Since div w(x) = 0, 
we have 

|div w(x) Jc 0 dA + j c w . D9\ = 

= líc [w(j) - w(x)] . D Ѳ(у)\ ^ Jc |w(y) - w(x)| . |D 0(y)| g 

й n Jc | j , - x| . \D Ѳ(у)\ S n d{e) f0jj < - \Є\у й Н(Ѳ) 
£ 

for each Ѳ e BV+(A) with x є cleS0, d(0) < ôx and г(Ѳ) > є. Select an e' > 0 with 
s'\A\ < s|3. If x is in E = deA - ( T u ЛГ), we use Lemma 4.1 to find a ôx > 0 so that 

|div w(x) JA 0 dÀ + Jc w . D0| < e' | л Ѳ dA 
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for each Ѳ є ВѴ+(Л) with x e c\eSe, d(9) < Sx, and г(Ѳ) > s. By Lemma 4.2 there 
is a caliber ц such that |j*c w . D0| < e 2~7/3 for each integer j ^ 1 and each Ѳ є 
є ЯК+(Л) with fl0|| < l/є and Щ1 < rjj. Define a gage ô in Л by letting 

\ôx if хес1еЛ - 7 , 
^ (0 if х є Т п с І И 

and choose a P = {(0l9 Xj), . . . , (Ѳр, xp)} in П(А, e; á, rç). Then Хл ~ Z p = Z;=i öy 
where ^-6 #К+(Л), ||@J < l/e, and l ^ < r\j ïorj = 1, ..., A:. Therefore 

|ff(div vv, P) - JbdA b . nA аЖ\ = | Z div w(jcf) Je 0, dA + Jc vv . DZ/1| ^ 
i - i 

^ X |div w(x,.) Jc 0, dA + Je w . D0,| + X |Jc w . DQj\ й 
i = i j = i 

^Xw(fl,) + 8'Xico,dA + - £ 2 - ' < 
.v,eN Хіє£ 3 y= t 

< H ( X 0 , ) + E' ic(X0, . )dA + ^ < 8 , 
X jSN І = 1 3 

and the theorem is proved. 

Remark 4.5. As the tight variational integral of [11, Remark5.2,4(a)] extends the 
integral defined inthis paper, the function / of [ l l , Example 5.2l] shows that the 
condition of'solidity'1 cannot be omitted from Proposition 2.5 (cf. Remark 2.6). 

5. THE CHANGE OF VARIABLES 

Let E c Rm be a measurable set. For a Lipschitzian map Ф: E ^ Rm (see [3, 
Section 2.2.7]), we denote by det Ф the determinant of the differential ВФ of Ф. 
By the Kirszbraun and Rademacher theorems ([3, Theorems 2.10.43 and 3.1.6]), 
the function det Ф is defined almost everywhere in E, and by [11, Lemma 5.16], 
it is determined uniquely by Ф up to a set of measure zero. A Lipschitzian map 
Ф: E ^>R'" is called a lipeomorphism if it is injective and the inverse map Ф"1 : 
Ф(Е) т* Rm is also Lipschitzian. If Ф is a lipeomorphism, then det Ф(х) ф 0 for 
almost all x e E. 

Lemma 5.1. Let AeBV and let Ф:Rm~+Rm be a Lipschitzian map with the 
Lipschitzian constant a and such that Ф [ A is a lipeomorphism onto a set В с Rm. 
Furthermore, let 0 be a function on Rm with Se c B, and let & = 0 о Ф . Хл- U 
SeBV+(A) then ѲеВѴ+(В), Щ1 ^ a w | 9 | 1 , and ||0|| ^ a " - * | | # | | . In particular, 
ВєВК\В\ й or\A\,and \\B\\ ^ um~l\\A\\. 

Proof. Let XF = (Ф [ A)~1. The function 0 is nonnegative bounded and measurable 
because Sg c B and 0 [ B = (# [ A) о W. As our further argument relies on in­
terpreting functions of bounded variation as normal currents, we shall adopt the 
notation of [3, Chapter 4]. Since X = Em [ # is a normal current, so is Ф#(Х) 
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(see [3, Sections 4.5.7] together with [4, Theorems 1.9 and 1.17], and [3, Section 
4.1.14]). It follows from [3, Lemma 4.1.25] that Ф#(Х) = Em [ h where h is a function 
on Rm defined as follows: 

f det<r(^rv)) 
if у є B and the fraction is defined , h{y) = i |det Ф(П>'))\ 

[ 0 otherwise. 

As Ф [ A is a lipeomorphism, \h\ = 0 almost everywhere. Thus letting Y= Em [ 0, 
we obtain 

|0|! = M(Y) = М(Ф#(Х)) g oTM(X) = оГ\Щх , 

Щ = M(dY) й М(дФ*{Х)) = М(Ф*(дХ) й *m~l M(dX) = оГ'хЩ. 

The proofis completed by observing that %A = / в о Ф . %А. 

Theorem 5.2. Let A e BV, let Ф: A ^ Rm be a lipeomorphism, and letfe </(Ф(А)). 
Then fo Ф . |det Ф\ belongs to J^{A) and 

/*/оФ.|а€Л#| = JJc^>/. 
Proof. Let В = Ф(А), and use Kirszbraun's theorem ([3, Theorem 2.10.43]) to 

extend the lipeomorphisms Ф:A^^Rm and Ф~x:B^>Rm to Lipschitzian maps 
Ф: Rm ^> Rm and W: Rm ^ Rm, respectively. By [11, Lemma 6.5], Ф and 4* are 
mutually inverse bijections between cL4 and clB. We let x* = Ф(х) for each x є с\Л 
and 0* = 0 о V . хв for each 0 є BV+(A). Clearly x = V(x*) and 0 = 0* о Ф . ^ , 
and it follows from [3, Theorem 3.2.3(2)] that 

|0*|, = Jß0*dA = \АѲ\аеіФ\аХ = | 0 d e t * | ! . 

According to Lemma 5.1, В є BVand 0* e BV+(B) for every 0 є BV+(A); moreover, 
there are positive constants a, ß, ß', and y, depending only on Ф, such that: 

1. \x* — y*\ S a | * — y\ for each x, у є c\A; 
2. j8'|0|j й |0*|i á ^ |0 | , and ||0*|| ^ y|)0|| foreach ѲеВѴ+(А); 
3. j8' ^ a. 

Choose an e > 0 and find a gage ôB in ß and a caliber r\ so that 

K/, e) - j;/[ < е/з 
for each ß є Я(Б, jS'e/(ay); 5B, ř/). Since det Ф є L°°(^m), there is an є' > 0 such that 

£ 

3(|Л| + 1) (|det 4>|. + 1) 

For each xec\eA select an ê  > 0 so that e, | /(x*)| < e'. By [13, Theorem], there 
is a set N c c\eA with \N\ — 0 and a positive gage оф in Л such that 

| |de t<r(x) | . |0 | , - | f l * H < e , | e | , 

for each x є c\eA — N and each Ѳ є BV+(A) with x є cleSe, d(0) < Зф(х), and r(0) > є. 
In view of Corollary 2.11, we may assume that det Ф(х) = 0 for each x є N. Let H 
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be the functional from Lemma 4.3 associated with N and e'. There is a positive gage 6U 

in A such that 

|/(jc*)| . |0 det Ф|! ^ Я(|Ѳ det Ф|) 

for each x є JV and each Ѳ e BV+(A) with x є cleS0 and d(9) < ôH(x). 

Since ^ maps thin sets into thin sets ([2, Lemma 1.8]), ôA = min [оф, ôH, öB о Ф/а} 
is a gage in A. If P = {(0l5 д^), . . . , (0p, xp)} belongs to П(А, e; сл , rj/ß), it is easy 

to verify that Q = {(öf, xf), . . . , (0*, **)} is in Л(В, ß'eftaiy); Sb, rj), and we obtain 

|a(/o<P.|det4>|,P)-J5/| £ 

й Í \f(xì) | d e t * ( * , ) | . Щг « f(x*) | в Г Ы + | I / ( x f ) | e * | , - ß / | g 
і = 1 і = 1 

^ X | / ( . v * ) | . | o , . d e t < i . | , + X e . , | / ( x n | . | o , . K + 
.r,-eN JCf îV 

+ K/, Ô) - Jî/I <lH(|0,det*|) + e' I |0,-|, + 5 = 
Xi6N xrfN 3 

= W(|det Ф| X Ö.) + 
.x;eiV 

+ e' J* ( X б.-) dA + ̂  á e'|dct Ф\„ + ф | + J ^ г . 
x,*N 3 3 

This completes the proof. 
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