Previous |  Up |  Next

Article

References:
[1] Albrecht U.: Endomorphism rings and $A$-projective torsion-free groups. Abelian Group Theory, Honolulu 1983, Springer LNM 1006 (1983); 209-227. MR 0722620
[2] Albrecht U.: Baer's Lemma and Fuchs' Problem 84a. Trans. Amer. Math. Soc. 293 (1986); 565-582. MR 0816310 | Zbl 0592.20058
[3] Albrecht U.: Faithful abelian groups of infinite rank. Proc. Amer. Math. Soc. 103 (1988); 21-26. DOI 10.1090/S0002-9939-1988-0938637-8 | MR 0938637 | Zbl 0646.20042
[4] Albrecht U.: Abelian groups, $A$, such that the category of $A$-solvabIe groups is preabelian. Abelian Group Theory, Perth 1987; Contemporary Mathematics, Vol. 87; American Mathematical Society; Providence (1987); 117-132. DOI 10.1090/conm/087/995270 | MR 0995270
[5] Albrecht U.: Endomorphism rings of faithfully flat abelian groups. to appear in Resultate der Mathematik. MR 1052585 | Zbl 0709.20031
[6] Arnold D., Lady I..: Endomorphism rings and direct sums of torsion-free abelian groups. Trans. Amer. Math. Soc. 211 (1975); 225-237. DOI 10.1090/S0002-9947-1975-0417314-1 | MR 0417314 | Zbl 0329.20033
[7] Arnold D., Murley C.: Abelian groups, $A$ such that $\Hom(A,-)$ preserves direct sums of copies of $A$. Pac. J. of Math. 56 (1975); 7-20. DOI 10.2140/pjm.1975.56.7 | Zbl 0337.13010
[8] Dugas M., Göbel R.: Every cotorsion-free ring is an endomorphism ring. Proc. London Math. Soc. 45 (1982); 319-336. MR 0670040
[9] Fuchs L.: Infinite Abelian Groups. Vol. I and II, Academic Press; London, New York (1970/73). MR 0255673 | Zbl 0209.05503
[10] Jans J.: Rings and Homology. Reinhold-Winston; New York (1979).
[11] MacLane S.: Homology. Academic Press; London, New York (1963). MR 0156879 | Zbl 0133.26502
[12] Rotman J.: An Introduction to Homological Algebra. Academic Press; London, New York (1982). MR 0538169
[13] Richman F., Walker E.: Ext in pre-abelian categories. Pac. J. of Math. 71 (2) (1977); 521-535. DOI 10.2140/pjm.1977.71.521 | MR 0444742 | Zbl 0354.18018
Partner of
EuDML logo