[1] Albrecht U.:
Endomorphism rings and $A$-projective torsion-free groups. Abelian Group Theory, Honolulu 1983, Springer LNM 1006 (1983); 209-227.
MR 0722620
[2] Albrecht U.:
Baer's Lemma and Fuchs' Problem 84a. Trans. Amer. Math. Soc. 293 (1986); 565-582.
MR 0816310 |
Zbl 0592.20058
[4] Albrecht U.:
Abelian groups, $A$, such that the category of $A$-solvabIe groups is preabelian. Abelian Group Theory, Perth 1987; Contemporary Mathematics, Vol. 87; American Mathematical Society; Providence (1987); 117-132.
DOI 10.1090/conm/087/995270 |
MR 0995270
[5] Albrecht U.:
Endomorphism rings of faithfully flat abelian groups. to appear in Resultate der Mathematik.
MR 1052585 |
Zbl 0709.20031
[8] Dugas M., Göbel R.:
Every cotorsion-free ring is an endomorphism ring. Proc. London Math. Soc. 45 (1982); 319-336.
MR 0670040
[9] Fuchs L.:
Infinite Abelian Groups. Vol. I and II, Academic Press; London, New York (1970/73).
MR 0255673 |
Zbl 0209.05503
[10] Jans J.: Rings and Homology. Reinhold-Winston; New York (1979).
[12] Rotman J.:
An Introduction to Homological Algebra. Academic Press; London, New York (1982).
MR 0538169