Previous |  Up |  Next

Article

References:
[1] V. Y. Andrunakievic, Ju. M. Rjabuhin: Rings with nilpotent elements and completely simple ideals. Soviet Math. Dokl. Vol. 9 (1968), No. 3 p. 565-568.
[2] W. H. Cornish, P. N. Stewart: Rings with no nilpotent elements with the maximum condition on annihilators. (To appear in Canadian Math. Bulletin.) MR 0352167
[3] W. J. Faucett R. J. Koch, K. Numakura: Complements of maximal ideals in compact semigroups. Duke Math. Journal 22 (1955), pp. 655-661. DOI 10.1215/S0012-7094-55-02270-5 | MR 0072425
[4] С. S. Ноо, K. P. Shum: On algebraic radicals in mobs. Colloquim Math. Vol. 25 (1972), p. 25-35. DOI 10.4064/cm-25-1-25-35 | MR 0302813 | Zbl 0236.22004
[5] K. Iseki: On ideals in semiring. Proc. Japan Acad. 34 (1958), No. 8, p. 507-509. MR 0100041 | Zbl 0085.02101
[6] J. Kist: Minimal prime ideals in commutative semigroups. Proc. London Math. Soc. (3) 75 (1963), p. 31-50. MR 0143837 | Zbl 0108.04004
[7] N. H. McCoy: The theory of rings. Macmillan Company, New York (1964). MR 0188241 | Zbl 0121.03803
[8] K. Numakura: Prime ideals and idempotents in compact semigroups. Duke Math. Journal 24 (1957), p. 671-679. DOI 10.1215/S0012-7094-57-02475-4 | MR 0091426 | Zbl 0218.22004
[9] A. B. Paalman, de Miranda: Topological semigroups. Mathematisch Centrum, Amsterdam 1964. MR 0167963 | Zbl 0136.26904
[10] Š. Schwarz: On dual semigroups. Czech. Math. Journal 10 (1960), p. 201 - 230. MR 0117294 | Zbl 0098.01602
[11] Š. Schwarz: Prime ideals and maximal ideals in semigroups. Czech. Math. Journal 19 (1969), p. 72-79. MR 0237680 | Zbl 0176.29503
[12] K. P. Shum, С. S. Ноо: On compact N-semigroups. submitted to Czech. Math. Journal. Zbl 0332.22003
[13] K. P. Shum: On the boundary of algebraic radical of ideals in topological semigroups. (To appear in Acta Math. Hung.)
[14] G. Thierrin: Sur les idéaux complement premiers d'un anneau quelconque. Bull. Acad. Royale Belgique, 43 (1957) p. 124-132. MR 0087639
[15] A. D. Wallace: Lecture notes on semigroups. Tulane University, 1956.
Partner of
EuDML logo