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Czechoslovak Mathematical Journal, 25 (100) 1975, Praha 

ON COMPRESSED IDEALS IN TOPOLOGICAL SEMIGROUPS ^ 

KAR-PING SHUM, Hong-Kong 

(Received December 29, 1973) 

A topological semigroup is a non-empty Hausdorff space together with a con­
tinuous associative multiplication, denoted by juxtaposition, (x, y) -> xy. When 
there is no possible ambiguity, we shall simply refer to Ŝ as a topological semigroup. 
In addition, if iS is a compact space, we call S a compact semigroup. Let / be a non­
empty subset of S. I is called an ideal of S if IS a I and SI с / . In 1957, GABRIEL 
THIERRIN [14] introduced a new class of ideals in ring theory, namely the compressed 
ideals. An ideal В in a ring Ĵ  is called compressed, if and only if for any positive 
integer, n, a\al ... а^еВ implies a^a2 ... a,,e B, where a^, a2, ..., a„ need not be 
distinct elements of R. KYOSHI ISEKI [5] then noticed that the majority of the results 
obtained by G. Thierrin can be carried over to semi-rings without change. According 
to K. Iseki, the smallest compressed ideal containing an ideal Ä is called the Thierrin 
radical of A. The aim of this paper is to study the compressed ideals in compact semi­
groups. We first show that a compressed ideal of a semigroup S is in fact a completely 
semi-prime ideal of S, and thus the Thierrin radical of an ideal Л in a commutative 
semi-group is the algebraic radical of A defined in [4]. If 5 is a compressed ideal of S, 
then for any element a of S, the set (s G 5' | as e B} is called the topological Б-divisor 
of a, and we denote it by Tod^ a. Some properties of the set Tod^ a will be studied 
in this paper, and some results obtained in [12] dealing with the topological zero 
divisors in compact commutative semigroups with zero will be amplified. We shall 
also give some characterizations of the Thierrin radical of an open ideal A in a com­
pact semigroup 5, which in a sense transports some results obtained by V. A. ANDRU-
NAKEVic - Ju. M. RjABUHiN [1] and W. H. CORNISH - P. N. STEWART [2] from ring 
theory to compact semigroups. 

Throughout the paper we will use the terminology of A. B. PAALMAN DE-MIRANDA 
[9]. Unless otherwise stated, S is an arbitrary semigroup and the word ideal shall 
mean two-sided ideal of S. 

^) This research was supported by a Summer Research Grant of Canadian Mathematical 
Congress at Université de Sherbrooke, Quebec, Canada. 
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I. COMPRESSED IDEALS 

Definition 1.1. A non-empty ideal P of 5 is said to be prime if AB cz P implies 
that A d P or В cz P, A, В being ideals of S. An ideal ß of S is said to be completely 
prime if ab e Q implies that a e Q or b e Q, a and b being elements of S. 

Remark 1. An ideal which is completely prime is prime, but the converse is not 
generally true. (See the example on page 51 in [9].) However, these concepts coincide 
in the case of normal semigroups. (A semigroup is called normal if aS = Sa for all 
a e S.) 

Remark 2. N. H. MCCOY [7] proved that P is a prime ideal of S if and only if 
aSb с P impHes that a e P or Ь e P. In this paper, we shall use McCoy's charac­
terisation for prime ideals in semigroups. 

Definition 1.2. A non-empty ideal Б of S is said to be completely semi-prime if and 
only if a^ e В implies that a e B. 

Definition 1.3. Let В be an ideal of S. The algebraic radical of В is defined to 
be the set R(B) = {x e S\x'^ e В for some integers и ^ 1}. 

Remark. If S is a commutative semigroup, then it was proved in [4] that В is 
a completely semi-prime ideal of S if and only if В = R(B). Moreover, if В is open, 
then R{B) is open [13]. 

Theorem 1.4. В is a compressed idéal of S if and only if В is completely semi-
prime. 

Before proving Theorem 1.4, we need the following lemma. 

Lemma 1.5. Let В be a completely semi-prime ideal of S, then the following 
statements hold: 

(i) / / xy e B, then yx e B. 

(ii) If a^b^ E Б, then ab e B. 

Proof, (i) Since В is an ideal of S, thus xy e В implies that y(xy) x =:= (yxV Q В 
Since В is completely semi-prime, so yx e B, 

262 



(ii) The proof of (ii) depends on the result obtained in (i). By (i), we have a^b^ e 
e ß => b^a^ E В => a{b^a) e B. Since Б is a completely semi-prime ideal of S, thus 
a(b^a) G Б => (Ь^аУ e В => b^^a e В. By (i), we obtain that (ba) b e B, and hence 
(ba)^ еВ => baeB. Applying (i) once more, we prove that ab e B. 

We now prove theorem 1.4. It is quite clear that every compressed ideal is com­
pletely semi-prime. We only need to show that every completely semi-prime is 
compressed. We proceed by induction. In lemma 1.5 (ii), we have already noted 
that the theorem is true when n = 2. Supposing that the theorem is true for и, we 
want to prove the theorem is true for n + 1 as well. So suppose alal... a^al+i еВ, 
then since В is an ideal of S, we have a^al... â _ i(a^a^+1)^ e B. By induction hypo­
thesis, we thus have 0^02 ... a^^^alal^^ eB, and so (а^аг ... а^^ха^У a^+i eВ. By 
induction hypothesis and lemma 1.5 (i), we therefore obtain that a„ + la^... a„_ i^^ e B. 
Since В is an ideal of S, so we have (a„+iai ... а„_^)^ al e В. Again, by induction 
hypothesis and lemma 1.5 (i), we obtain that a^... а^^^а^^а^^ i e B. Thus В is a com­
pressed ideal of S. The proof is complete. 

Corollary 1. / / В is a compressed ideal of S, then a^a2 ... a„eВ implies a[^a2^... 
... alp G В for any positive integers l^, I2,...,/« (^^d a^^a^2 .-- ai" ^ В implies a^ai. •. 
... a„eВ (see K. Iseki [5]). 

L ^Remark 1. Theorem 1.4 is not true if В is not a two-sided ideal of S. Let for in­
stance S = {0, ^1, e2, a, b} with the multiplication table 

• 

0 

^1 

ei 

a 

b 

0 

0 

0 

0 

0 

0 

^1 

0 

ßd 

0 

a 

0 

^2 

0 

0 

ei 

0 

b 

a 

0 

0 

a 

0 

^1 

b 

0 

X. 
0 

^2 

0 

The set В = {0, b, e^} is a right ideal of S and is clearly completely semi-prime. 
However, a^b^" = OeB, but ab = е2ф В. So В is not compressed. 

t.̂ -̂ '" fiemark 2. A subset С of 5 is called compressed subset of S if and only if a^ E С 
implies a E G for any element a e 5. In general, С need not be an ideal of S as can 
be seen by the above example. The subsets {0, a} and {0, b} are compressed subsets 
of S, and neither one is an ideal of S. 

Definition 1.6. Let В be an ideal of S. The Thierrin radical of В is defined to be the 
intersection of all compressed ideals containing Б, denoted by T(B). If S does not 
contain any proper compressed ideals containing B, then T(B) = S. 
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Given an ideal В of S, by applying Theorem 1.4 we can construct the Thierrin radical 
of В by the following way: we call an element x a r-element of Б if x ^ Б but x^ e B, 
В together with the set of all r-elements of В is denoted by R^(B), that is, R^{B) is 
the set {x e S I x" G Б for some integer и ^ 1}. If 5 is a commutative semigroup, 
then R*(B) is a compressed ideal of S, and hence R^(B) is the Thierrin radical of Б. 
If S is not a commutative semigroup, then let T^ (Б) = /(Я*(Б)), which is the 
principal ideal generated by the set R%B). Write T2(B) = J(jR*(Ti(5)). By induction, 
we have T„{A) = J(R%T„_^(B)). Then each T„(B) is an ideal of S and T„(B) a 

' cz T„ + 1(Б). The Thierrin radical T(B) of Б is the union of all sets T^B) (n = 1, 2, . . . ) , 
00 

that is, T(B) - и T„{B), 
n = l 

K. Iseki proved in [5] that the algebraic radical of Б is contained in T(B). If 5 
is a commutative semigroup, then since R(B) = R(R{B)), so it follows R(B) is a com­
pletely semi-prime ideal and hence compressed. But T{B) is defined to be the inter­
section of all compressed ideals of S containing Б, that is, T(B) is the smallest 
compressed ideal containing Б, thus we must have R{B) = T(B). Summing up the 
above information, we have the following: 

Theorem 1.7. Let В be an ideal of a commutative semigroup S. Then, the Thierrin 
radical of В coincides with the algebraic radical of B. 

Theorem 1.8. Let J be a maximal proper ideal of a compact semigroup S. Then J 
is a compressed ideal of S if and only if J is a completely prime ideal of S, 

Proof. If J is a compressed ideal, then J is completely semi-prime. Hence a e 
E S - J implies a^ eS - J. By a result of W. H. FAUCETT - R. J. KOCH - K. 
NuMAKURA [3; p. 656], we then have that J is a completely prime ideal. The converse 
part of this theorem is obvious. 

Definition 1.9. An ideal Б* in a semigroup S is called a weakly compressed ideal 
of S if for any pairs of distinct elements a^, «2 of S such that ala\ e Б* we have 
aia2eB*. 

Clearly, a compressed ideal is weakly compressed, but a weakly compressed ideal 
need not be compressed. For instance, let S = {O, a} with multiplication 0^ = a^ = 
= Oa = flO = 0, then 5 is a semigroup and {0} is a weakly compressed ideal of S, 
{0} is not compressed since a^ = 0 e {O}, but a ф {O}. 

Theorem 1.10 Let S be a compact connected semigroup such that S Ф 5^, then S 
is the union of proper weakly compressed ideals of 5, each of which is dense in S. 

Proof. Since 5^ Ф S, then we can pick an element aeS — S^. Clearly S — [a] 
is a maximal proper ideal of S. Suppose if possible, a\a\ e S — {a} but ai^2 Ф S — 
— [a]. Then а^Дз = ^- ß^t this means that a e S^, which contradicts the choice of a. 
S — {a} is therefore a weakly compressed ideal of S. We claim that \S — S^\ ^ 2. 
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This is because S^ is compact, hence closed and S is connected, hence S — S^ has 
to have more than one element. So there are at least two distinct elements a, b 
in S ~ S^. As S = (S - {a}) u {a} a (S - {a}) KJ (S - {b}), we conclude that 
S = \J(S - {flj), where a I runs through S — S^', The compactness and connected-

Cli 

ness of S imply that each of the ideals {S — {a J ) is dense in S. Our proof is completed. 

IL TOPOLOGICAL ^-DIVISORS 

In this section, В will denote a compressed ideal of a semigroup S. The topological 
^-divisor of a subset Ä oî S with respect to В is defined to be the set Tod^ Ä = 
= {x e S \ ax E В (or all a e A}. If A = {a}, then we abbreviate Tod^ {a} by Tod^ a 
and a will be called a topological Б-factor if a G 5 — Б. In view of lemma 1.5(i), 
we know that Tod^ a is an ideal of S, and Tod^ a = {x e S \ ax e B} = {x e S \ xa e 
ев}. 

The following results on topological Б-divisors are straightforward and proofs 
are therefore omitted. 

Proposition 2.1. For any x, у e S, we have 

(i) Todß X is a compressed ideal of S. 

(ii) Todß b = S for any b e B, 

(iii) TodTodB:x: ^ = TodjB x. 

(iv) Todj5 (Todß xy) = Tod^ (Tod^ x) n Tod^ (Tod^ y). 

Proposition 2.2. (i) If В is an open compressed ideal of S, then Tod^ x is an open 
compressed ideal of S. 

(ii) / / В is a closed compressed ideal of 5, then Tod^ x is a closed compressed 
ideal of S. 

Proof. It is known that if В is open, then Todj^ x is open, and if В is closed, then 
Todß X is closed. See [4]. 

Proposition 2.3. For any x, y, z e S, we have 

(i) TodßX = TodßX^. 

(ii) Todß xy = Todß ух. 

(iii) Todß X с Tod^ z and Tod^ y a Tod^ z, if and only if Tod^ xy с Tod^ z. 

(iv) / / Todj5 x = Tod^ y, then Tod^ zx = Todjj zy, 

(v) / / Todj5 X cz Todß J, f/ien Todß zx cz Tod^ zy. 
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Proof, 

(i) Obvious. 

(ii) Let a e Tod^ xy. Then xya e B. Since В is a compressed ideal, we have 

yxya e В => a(yxy) e В => а{ухУ e В =^ a e Tod^ (ухУ = Todjg ух . 

Similarly, Tod^ ух с Todß xy. Thus, Tod^ xy = Tod^ yx. 

(iii) Let 

a G Todß xy . Then xya e В oxa e Todß у cz Todß z о z x a e В о 

оazx e В oaz E Todß x c Tod^ z <^az^- e В oa e Tod^ z^ = Tod^ z . 

Hence, Todß xy cz Todß z. For the converse part, we first notice that 
Todß л: cz Todß xy, Todß у с Todß xy. Thus if Todß xy с Todß z, then 
we have 

Todß X с Todß z , Todß j ; с Todß z . 

(iv) а e Todß zx <=> zxa e В о az e Todß x = Todß у о azy e В о a e Todß zy . 
Hence, Todß zy = Todß zx. 

(v) Follows from (iv). 

For elements a,b e S, we define öRßb if and only if Todß a = Todß b. We can 
verify that jRßis an equivalence relation associated with B. Since proposition 2.3 (iv) 
holds, this equivalence relation is in fact a congruence relation defined on S. 

Theorem 2.4. Let В be a compressed ideal of a compact semigroup S. If В is 
simultaneously closed and open in S, then SjRß is a compact commutative semi­
group. 

Proof. Since jRß is a congruence relation on S x S, the quotient S/RQ is well-
known to be a semigroup [15]. The commutativity of S/Rg follows from proposition 
2.3 (ii). In order to prove S/Rßis a compact semigroup, we need to verify that Rg 
is a closed congruence relation on S x S [15]. For this purpose, let (x, y) e Kg. 
Then there is a net {(Xi, yi)}ieA^ RB such that lim (Xj, j^i) = (x, y), where Л is 
a directed set. Suppose Todß x Ф Todß у, then we can find an element t such that 
ty E В but tx Ф B. Recall that the multiplication is continuous and a set in a topo­
logical product converges to a point p if and only if its projection in each coordinate 
space converges to the projection of the point p. Thus, we have Hm txi = t lim x^ = 
= txфB and hm tyi = ty E B. Since В is open, ty^. e В for large enough a,-. Since В 
is compact, there is an open neighbourhood F(x) of X such that t V{x) n В = 0. 
Pick x^. in the net {х^}^^^ such that Xß.E F(x), we have tXß.^B, Write r^ = 
= max {a ,̂ ßi}. Since Todß x̂  = Todß у,- for each i, so ty^^ e В if and only if tx^. e B. 
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We thus arrive at a contradiction. JR̂  is therefore a closed congruence on S x S, 
which completes the proof. 

Theorem 2.5. Let В be an open compressed ideal of a compact semigroup S, 
Then for each element x e S ~ B,we have Tod^ x — Tod^ e, where e^ = ее Г(х) = 

Proof. Let aeTodßX. Then ахеВ. Since В is an ideal, we have axS с В. 
Hence ax" G axS c: В for all positive integers я ^ 1. By the compactness of S and 
the continuity of multipHcation, we have ae e a Г(х) a axS a B, that is, a e Tod^ e, 
where e^" = e e Г(х). Assume that Tod^ x G Tod^ e. Then we can pick an element 
z G Todj3 e — Todj5 x such that ze e B, with zx ф В. Since В is compressed, thus 
гхф В implies zx" ф В for all integers n ^ 1. Since В is open, S — В is closed and 
hence compact, then zee В implies that there is a neighbourhood V(e) of e such 
that z V(e) n (S — B) = 0. But e e Г{х) implies that x"° e V(e) for some large enough 
integer HQ. Hence zx"^ e z V(e). Thus, zx"° e В which is a contradiction. We therefore 
conclude that Tod^ x = Tod^ e. 

Corollary. In theorem 2.5, let G^ = {x e S — В\е1 = e^e Г(х)}, then G^ n 
n Todß ^̂  = 0. 

Proof. Since В is an open compressed ideal of S, S is compact. So S — J5 is 
also compact. Hence e^ e Г(х) a S — В. Now suppose that G^ n Tod^ e^ Ф 0. 
Let у e G„ n Tod^ e,,. Then e^ e Г(у) and ^̂ У ̂  ^- Since Б is an ideal of 5", we have 

e^yS с В. Thus K(y) = e^ Г(у) с В, where K(j^) = П {уЧ г è ^Î}, which is a sub-

group of Г(у) if r(j^) is compact. Thus e^ e K(y) a B, SL contradiction. 

Remark. Tod^ x = Todß e does not imply that e e Г(х). Let for instance S = 
= {0, ej} with e^ = e, / ' = / , ef = fe== e. Then Tod^o) e = Tod^o}/ = {O}, 
b u t / ^ r ( ^ ) . 

Definition 2.6. A semigroup S is defined to be a quasi-normal semigroup if the 
idempotents of S are mutually commutative with each other under multiplication. 

Definition 2.7. Let В be an ideal of S. An idempotent e is said to be jB-primitive 
if ефВ and e is the only idempotent in eSe — B, 

Remark. Let E be the set of idempotents of S. For e,feE, define e ^ fif and only 
if ef = fe = e. It is clear that ^ is a partial ordering in £. Thus, by definition 2.7, 
the atoms of the partially ordered set E n {S ~ B) (if they exist) are Б-primitive 
idempotents of 5'. 
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Theorem 2.8. Let S be a compact quasi-normal semigroup and В an open 
compressed ideal of S. If e^ is a B-primitive idempotent of S, then Tod^ e^ is an 
open prime ideal of S. 

Proof. We first claim that if/ is an ideal of S which is not contained in Tod^ e^, 
then there is an idempotent/such t h a t / G / — Tod^ e«. Let xel — Todjj e^ and con­
sider the principal ideal J(x) generated by x. Clearly Г(х) c J(x) a L Since S is 
compact, there is an idempotent / e Г(х) с /. Suppose if possible that / e Tod^ e«. 
Then we have K(x) = / Г(х) cz Todß ê . Since В is an open ideal of S, Tod^ e^ is 
open. Thus there is an integer и ^ 1 such that x" e Tod^ e^, that is, x"e^ e B. 
Because В is compressed, we have xe^ e B, which means that x e Tod^ e^, a contradic­
tion. Our claim is established. Since e^ ф В, we have Tod^ e^ c: JQ(S — ej, where 
JQ(S — ej is the maximal ideal contained in the set S — e^. If Tod^ e^ Q Jo(S — e j , 
then by the above claim, there is an idempotent / e Jo(S — ej — Tod^ e«. Since S 
is quasi-normal and e^ is ß-primitive, we obtain that e^f = e^. Hence e^ e J(eJ J{f) с 
cz J(J) с JQ{S — ^J, which is clearly impossible. We thus conclude that Tod^ e^ = 
= JQ{S — e j . Applying the well-known theorem of K. Numakura [8], we know 
that Todß e^ is an open prime ideal of S. 

We remark that Theorem 2.8 slightly generalizes a result obtained in [12], in fact, 
their proofs are essentially parallel. Moreover, if e^ is not B-primitive Tod^ e^ is not 
necessarily a prime ideal. (See [12].) 

III. COMPRESSED IDEALS AND THIERRIN RADICALS 

Theorem 3.1. Let S be a compact semigroup and В a proper open compressed 
ideal of S. Then В can be expressed as the intersection of a family of open prime 
ideals of S. 

Proof. Since В is an open compressed ideal of S and ß Ф S, then, by lemma 3.3 
in [4], there exists at least one idempotent eeS — B. Hence В cz JQ{S — e). By 
K. Numakura [8], JQ{S — e) is an open prime ideal of iS. Now let Q = П^а where P^ 

a 

runs through all the open prime ideals containing B. It is clear that Q ZD BAïB itself 
is a prime ideal, then there is nothing to prove. If otherwise, we may assume that 
Ö ^ JB. Then by lemma 3.3 in [4] again, there is an idempotent/e Q — Б. Hence 
JQ{S — / ) is an open prime ideal containing B. Thus, feQc: JQ(S — / ) , which is 
a contradiction. We therefore conclude that Q = f)P^ = B. 

a 

Remark. This theorem gives a topological version of a theorem of J. KIST ([6; 
p. 33]). 

Corollary 1. / / В is a proper open compressed ideal of a compact semigroup S, 
then В = 0 Tod^ e^, where ê  runs through the set E n (S — B)-

a 
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Proof. Since e^ ф В, so Tod^ e^ с JQ(S — ej = P^. By theorem 3.1, we therefore 
have В cz 0 Tod^ e„ с П^« = Я. Thus ß = П Todß е^. 

а а а 

Note. The result of Corollary 1 can be sharpened to Б = П Tod^ Cß, where Cß 
ß 

runs through all non-minimal idempotents in E n (S — B). This is because if 
Ci S ^2 then Todß Cj c: Tod^ e^. 

Corollary 1 of Theorem 3.1 has an immediate appHcation. 

Theorem 3.2. Let S be a compact quasi-normal semigroup. Let В be an open 
compressed ideal of S such that В can be expressed as the intersection of all maximal 
ideals of S. If E n(S — B) consists of B-primitive idempotents only, then S can 
be expressed as a finite union of sets Tod^ e^, each e^^ being some B-primitive 
idempotent of S. 

Proof. By Theorem 2.8, each Tod^ e^ is an open prime ideal containing B. So, 
by S. Schwarz [11], Todß e^ is a maximal ideal of S. Denote S — Tod^ e^ by A^. 
Clearly, for each a, e^ e A^. Now by a result of W. M. Faucett - R. J. Koch - K. 
Numakura [3], each A^ is disjoint union of groups and the product of two idem­
potents in A^ lies in A^, We claim that each A^ is a group. For if e*^ = e* e A^ then 
e^e* e A^, As e^ is a Б-primitive idempotent, we must have e^e* = e^, that is, e* = e .̂ 
Our claim is estabHshed. Then, as it is proved by S. Schwarz [10; p. 465] that for each 
X e A^y the principal ideal generated by x must have empty intersection with Aß for 
every j5 Ф a, thus Cj^S n Aß = Ф for every ß except jS = 1. In particular, ^1^2 ^ 
G Todß Cß for all ß except ß = 1. Similarly, ^2^1 с: Todß Cp for all Г except Г = 2. 
So that, by corollary 1 of theorem 3.1, we have ^^^2 6 П Todjj ê , = Б. Hence 

a 

e^ e Todß ^2- As A^ is a group, then for any x e A^, x = CiX e Tod^ 2̂? that is, 
A^ cz Todß ^2. Therefore S is covered by all open sets Todg e^ for all a. Since S is 

n 

compact, there is a finite number n such that S = \J Todß ê j, which completes 
the proof. a=i 

Let Б be an open ideal of a compact semigroup 5; it is natural to ask whether the 
Thierrin radical of В is open or not. We give here a partial answer to this problem. 

Lemma 3.3. Let S be a compact normal semigroup and В an ideal of S, Then 
the Thierrin radical of В contains exactly those idempotents which are contained 
in B, 

Proof. Let T{B) denote the Thierrin radical of B. Suppose if possible that there 
exists an idempotent e e T(B) — B, Then В a JQ(S — e), where Jo{S — e) is known 
to be an open prime ideal of S (by Numakura [8]). Since S is a normal semigroup, 
so JQ{S — e) is therefore a completely prime ideal of 5, and hence compressed. As 
T{B) is defined to be the smallest compressed ideal containing B, so T{B) с JQ{S — e). 
This contradicts e e T{B). Our proof is completed. 
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Corollary. Lef S be a normal semigroup. If С is a compressed ideal of S con­
taining an open ideal B, then С is not the Thierrin radical of В if and only if С 
contains an idempotent not in B. 

Theorem 3.4. Let S be a compact normal semigroup. If В is an open ideal of S, 
then the Thierrin radical of В is open. 

Proof. Let E(T(B)) denote the set E n (S - T(B)), let E(B) denote the set E n 
r\ (S — B), where E is the set of idempotents of S, which is well known to be a closed 
subset of S [Page 22, 9]. Since T(B) is a compressed ideal of S, so x ф T(ß) implies 
x" Ф T(B) for any integer n. Let Г(х) denote {x„}^= ^. Then since S is compact, there 
exists an idempotent e^- — ее Г(х). We claim that eф T(B). For if ^ e T(B), then 
by lemma 3.3, we must have ее В and hence e Г(х) = K(x) a В a T(B), where 

K(x) = П {x' I i ^ n}. Since В is open, so there is an integer n such that x" e T(B). 
i= 1 

As T(B) is compressed, hence x e T(B), a contradiction. Our claim is therefore es­
tablished. Hence T(B) с 0{Jo(S ~ e) \eeE{T{B))}. By similar arguments in the 
proof of Theorem 3.1, we can prove that T{B) = Ç\{Jo{S - e) \eeE{T{B))} = 
= Jo{S - E{T{B))\ Applying lemma 3.3 again, we then have T{B) = /o(-^ - ^(^)) . 
Since В is open, so E{B) is closed and hence T{B) is open. 

Definition 3.5. A subset M of a semigroup S is an M-system if and only if a, b e M 
imply that there is an element x e S such that axb e M. By McCoy's characterisation 
of prime ideals, the complement of a prime ideal in S is an M-system. 

Using the notion of M-system, V. A. Andrunakevic - Ju. M. Rjabuhin [1] and 
K. Iseki [5] proved in rings and semi-rings that if Б is a compressed ideal and Ä is 
any ideal such that Ä :D B, then there is some completely prime ideal P so that P :=> В 
but P Ф Ä. We now generalize this result to compact semigroups. 

Theorem 3.6. Let S be a compact semigroup and В an open compressed ideal 
of S. If A is any ideal such that A g Б, then there is some open completely prime 
ideal P so that P ID В but P ф A. 

Before proving theorem 3.6, we need the following lemma. 

Lemma 3.7. Let S be a compact semigroup. Then the closure of an M-system 
of S is also an M-system. 

Proof. Let M be an M-system of S. Suppose M is not an M-system, then for any 
a,beM there does not exist element x e S such that axb e M, that is, aSb пМ = 
— 0, Since S is compact, there exist neighbourhoods V oî a,Woib such that VSWr\ 
n M = 0. Since a,b e M, there are elements a^eVn M and b^eWnM. Because M 
is an M-system, there is an element x e S such that а^хЬ^еМ. Hence a^xbi e 
eVSWnM, which is a contradiction. 
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We now turn to Theorem 3.6. Let a be any element in S such that ae Ay a ф B. 
Since В is a.compressed ideal, the M-system M = {a'}, / = 1. 2 , . . . , does not in­
tersect B. We denote by M* a maximal M-system containing M and not intersecting 
the ideal B. Since В is open, S — В is closed. Thus, by lemma 3.7, the maximal 
M-system M* contained in S — В must be closed. Let P be the complement of M*. 
Then P will be an open ideal containing B. By the result of Andrunakevic-Rjabuhin 
[1] and K. Iseki [5], P is known to be an open completely prime ideal of S with the 
desired property. 

Corollary 1. / / В is an open compressed ideal of a compact semigroup S, then В 
is the intersection of all the open completely prime ideals which contain it. 

Lemma 3.8. Let В be a compressed ideal of S. If x is a topological B-factor, 
then the following assertions are equivalent. 

(i) Todß X is maximal. 

(That is, if Tod^ x с Tod^ y, then Tod^ у = S or Tod^ y = Tod^ x) 

(ii) Todß X is a prime ideal of S. 

(iii) TodjB X is a minimal prime ideal containing B. 

(iv) Todß X is a completely prime ideal of S. 

Proof, (i) implies (ii). Since В is an ideal, then Tod^ x cz Todß ax for any a e S, 
If Todß X Ф Todß ax, then Todß ax = S. In particular, x e Todß ax. Since В is 
compressed, ax^' e В implies ax e B, that is, a e Todß x. Thus if a ^ Todß x, then 
Todß ax = Todß x. Since x ф Todß x and ax ф Todß ax = Todß x, it follows that 
Todß X is completely prime, so of course Todß x is prime. 

(ii) implies (iii). Suppose Q is a prime ideal such that В a Q a Todß x. We shall 
prove Q = Todß x. Let t e Todß x, then txe В and hence Stx cz B. Since В is 
compressed, we have xSt с Б cz Q. As ß is assumed to be a prime ideal, thus either 
xe QoT t e Q. Clearly xe Q c: Todß x is impossible. Therefore t e Qso Todß x = Q. 

(iii) implies (iv). Suppose that ab e Todß x. Then abx e B. Since В is a compressed 
ideal, we have bxa e B, Sbxa с В and aSbx с В. Thus aSb a Todß x. Todß x 
is prime, we must have a e Todß x or Ь e Todß x. 

(iv) implies (i). Suppose that there is a topological ß-factor у e S — В such that 
В d Todß X с Todß у. Then pick any a e Todß у, hence ay e В a Todß x. Since 
Todß X is completely prime, then either a e Todß x or у e Todß у. Clearly у ф Todß у. 
Therefore Todß у = Todß x. 

Remark. The above lemma is taken from the work of W. H. Cornish and P. N. 
Stewart in ring theory [2]. 
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Theorem 3.9. Let В be a compressed ideal of a compact semigroup S, If x is an 
element in S — В such that Tod^ x is a maximal proper ideal ofS, then the following 
assertions are true and equivalent. 

(i) S — Todß x contains an idempotent and the product of any two idempotents 
of S — Todß x lies in S — Tod^ x. 

(ii) Todß X is an open completely prime ideal. 

(iii) Todß X is a minimal open prime ideal containing B. 

Proof. The equivalence of (i) and (ii) follows immediately from a theorem of 
W. M. Faucet t -R. J. Koch - K. Numakura [3; p. 656]. The equivalence of (ii) 
and (iii) follows from lemma 3.8. As (ii) is always true under the assumption of the 
theorem, thus the above statements are true. 

Finally we isum up the results on open compressed ideals obtained in this section. 

Theorem 3.10. Let S be a compact semigroup and В an open ideal of S. If 
E n (S — B) is finite, then the following assertions are equivalent: 

(i) В is an open compressed ideal. 

(ii) В is the intersection of finite number of open prime ideals. 

(iii) В is the intersection of finite number of the open ideals Tod^ e,-, where Ci 
runs through £ n (S — B). 

(iv) В is the intersection of finite number of open completely prime ideals. 

Proof, (i) implies (ii). This follows immediately from Theorem 3.1. 
n 

(ii) implies (iii). Since В is open, each Tod^ e,- is open. The fact that В = Ç) Tod^ e^, 
i = l 

CiE E r\{S — B) follows from Corollary 1 of Theorem 3.1. 

(iii) implies (iv). If Tod^ e,- itself is a prime ideal, then by the proof of lemma 3.8 
Todß Cl is a completely prime ideal. If Todg ei is not a prime ideal, then by proposi-

n 

tion 2.2, Todß Ci is always a compressed ideal. Apply theorem 3.6, Todjg Ci = П Pi, 

where Pi are open completely prime ideal of S. The finiteness follows from the fact 
the E n (S — B) is finite, and each open prime ideal has the form JQ(S — e^). 

(iv) implies (i). Obvious. 
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