Previous |  Up |  Next

Article

References:
[1] A. Ben-Israel, A. Charnes: Contributions to the theory of generalized inverses. J. Soc. Indust. Appl. Math., XI (1963), 667-699. DOI 10.1137/0111051 | MR 0179192 | Zbl 0116.32202
[2] A. H. Clifford, G. B. Preston: The Algebraic Theory of Semigroups. Vol. 1, Math. Surveys No. 7, Amer. Math. Soc, Providence, 1961. MR 0132791 | Zbl 0111.03403
[3] J. L. Doob: Topics in the theory of Markov chains. Trans. Amer. Math. Soc, 52 (1942), 37-64. DOI 10.1090/S0002-9947-1942-0006633-7 | MR 0006633
[4] H. K. Farahat: The semigroup of doubly-stochastic matrices. Proc. Glasgow Math. Assoc. 7 (1966), 178-183. DOI 10.1017/S2040618500035401 | MR 0202730 | Zbl 0156.26001
[5] T. N. E. Greville: Some applications of the pseudoinverse of a matrix. SIAM Rev., II (1960), 15-22. MR 0110185 | Zbl 0168.13303
[6] K. H. Hofmann, P. S. Mostert: Elements of Compact Semigroups. Charles E. Merrill, Columbus, 1966. MR 0209387 | Zbl 0161.01901
[7] J. S. Montague, R. J. Plemmons: Convex matrix equations. Bull. Amer. Math. Soc, 78 (1972), 965-968. DOI 10.1090/S0002-9904-1972-13070-2 | MR 0306231 | Zbl 0262.15011
[8] R. Penrose: A generalized inverse for matrices. Proc. Cambridge Phil. Soc, 51 (1955), 406-413. MR 0069793 | Zbl 0065.24603
[9] R. J. Plemmons, R. E. Cline: The generalized inverse of a nonnegative matrix. Proc Amer. Math. Soc, 31 (1972), 46-50. DOI 10.1090/S0002-9939-1972-0285541-5 | MR 0285541 | Zbl 0241.15001
[10] Š. Schwarz: On the structure of the semigroup of stochastic matrices. Magyar Tud. Akad. Kutato Int. Kozl., (A) 9 (1964), 297-311. MR 0188337 | Zbl 0143.03303
[11] Š. Schwarz: A note on the structure of the semigroup of doubly stochastic matrices. Mat. Časopis Sloven. Akad. Vied., 17 (1967), 308-316. MR 0241451 | Zbl 0157.04902
[12] J. R. Wall: Generalized inverses of stochastic matrices. Lin. Alg. Appl., to appear. MR 0364307 | Zbl 0305.15002
Partner of
EuDML logo