[1] Annin, B. D., Kovtunenko, V. A., Sadovskii, V. M.:
Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks. in Analysis, Modelling, Optimization, and Numerical Techniques, G. O. Tost, O. Vasilieva, eds.,Springer Proc. Math. Stat., 121 (2015), 49–56.
MR 3354167
[2] Bauer, E.: Modelling limit states within the framework of hypoplasticity. AIP Conf. Proc., 1227, J. Goddard, P. Giovine and J. T. Jenkin, eds., AIP, 2010, pp. 290–305.
[3] Bauer, E., Wu, W.: A hypoplastic model for granular soils under cyclic loading. Proc. Int. Workshop Modern Approaches to Plasticity, D. Kolymbas, ed., Elsevier, 2010, pp. 247–258.
[5] Gudehus, G.: Physical Soil Mechanics. Springer, Berlin, Heidelberg, 2011.
[6] Huang, W., Bauer, E.:
Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Meth. Geomech., 27 (2003), pp. 325–352.
DOI 10.1002/nag.275
[7] Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. WIT-Press, Southampton, Boston, 2000.
[8] Kolymbas, D.: An outline of hypoplasticity. Arch. Appl. Mech., 61 (1991), pp. 143–151.
[9] Kovtunenko, V.A., Zubkova, A.V.:
Mathematical modeling of a discontinuous solution of the generalized Poisson–Nernst–Planck problem in a two-phase medium. Kinet. Relat. Mod., 11 (2018), pp.119–135.
DOI 10.3934/krm.2018007 |
MR 3708185
[10] Niemunis, A.: Extended Hypoplastic Models for Soils. Habilitation thesis, Ruhr University, Bochum, 2002.
[12] Svendsen, B., Hutter, K., Laloui, L.:
Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity. Continuum Mech. Therm., 4 (1999), pp. 263–275.
DOI 10.1007/s001610050115 |
MR 1710675
[13] Wu, W., Bauer, E., Kolymbas, D.:
Hypoplastic constitutive model with critical state for granular materials. Mech. Mater., 23 (1996), pp. 45–69.
DOI 10.1016/0167-6636(96)00006-3