[2] Boritchev, A.:
Estimates for solutions of a low-viscosity kick-forced generalised Burgers equation. Proceedings of the Royal Society of Edinburgh A, 143(2) (2013), pp. 253–268.
DOI 10.1017/S0308210511000989 |
MR 3039811
[3] Boritchev, A.:
Sharp estimates for turbulence in white-forced generalised Burgers equation. Geometric and Functional Analysis, 23(6) (2013), pp. 1730–1771.
DOI 10.1007/s00039-013-0245-4 |
MR 3132902
[4] Boritchev, A.:
Erratum to: Multidimensional Potential Burgers Turbulence. Communicationsin Mathematical Physics, 344(1) (2016), pp. 369–370, see [5].
DOI 10.1007/s00220-016-2621-z |
MR 3493146
[5] Boritchev, A.:
Multidimensional Potential Burgers Turbulence. Communications in Mathematical Physics, 342 (2016), pp. 441–489, with erratum: see [4].
DOI 10.1007/s00220-015-2521-7 |
MR 3459157
[6] Boritchev, A.:
Exponential convergence to the stationary measure for a class of 1D Lagrangian systems with random forcing. accepted to Stochastic and Partial Differential Equations: Analysis and Computations.
MR 3768996
[8] Doering, C., Gibbon, J. D.:
Applied analysis of the Navier-Stokes equations. Cambridge Texts in Applied Mathematics, Cambridge University Press, 1995.
MR 1325465
[9] E, Weinan, Khanin, K., Mazel, A., HASH(0x24dff00), Sinai, Ya.:
Invariant measures for Burgers equation with stochastic forcing. Annals of Mathematics, 151 (2000), pp. 877–960.
DOI 10.2307/121126 |
MR 1779561
[10] Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics. preliminary version, 2005.
[11] Gomes, D., Iturriaga, R., Khanin, K., HASH(0x24e24c0), Padilla, P.:
Viscosity limit of stationary distributions for the random forced Burgers equation. Moscow Mathematical Journal, 5 (2005), pp. 613–631.
DOI 10.17323/1609-4514-2005-5-3-613-631 |
MR 2241814
[13] Iturriaga, R., Khanin, K., HASH(0x24e6f80), Zhang, K.: Exponential convergence of solutions for random Hamilton-Jacobi equation. Preprint, arxiv: 1703.10218, 2017.
[14] Iturriaga, R., Sanchez-Morgado, H.:
Hyperbolicity and exponential convergence of the Lax-Oleinik semigroup. Journal of Differential Equations, 246(5) (2009), pp. 1744–1753.
DOI 10.1016/j.jde.2008.12.012 |
MR 2494686
[15] Khanin, K., Zhang, K.:
Hyperbolicity of minimizers and regularity of viscosity solutions for random Hamilton-Jacobi equations. Communications in Mathematical Physics, 355 (2017), pp. 803.
DOI 10.1007/s00220-017-2919-5 |
MR 3681391
[16] Sinai, Y.:
Two results concerning asymptotic behavior of solutions of the Burgers equation with force. Journal of Statistical Physics, 64, 1991, pp. 1–12.
DOI 10.1007/BF01057866 |
MR 1117645