[1] Wiener N. : The Dirichlet problem. J. Math. Phys. 3 (1924), 127–146.
[2] Wiener N. : Certain notions in potential theory. J. Math. Phys. 3 (1924), 24–51.
[3] Poincaré H. :
Sur les équations aux derivées partielles de la physique mathématique. Amer. J. Math. 12 (1890), 211–299.
MR 1505534
[4] Zaremba S. C. : Sur le principe du minimum. Bull. Acad.Sci. Cracovie, Juillet 1909.
[5] Lebesgue H. : Sur des cas d’impossibilité du problème de Dirichlet ordinaire. C. R. des Séances de la Société Mathématique de France 17 (1913).
[6] Littman W., Stampacchia G., Weinberger H. F. :
Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa Serie III, 17 (1963), 43–77.
MR 0161019 |
Zbl 0116.30302
[7] Fabes E. G., Jerison D., Kenig C. :
The Wiener test for degenerate elliptic equations. Ann. Inst. Fourier (Grenoble) 32 (1982), 151–182.
MR 0688024
[8] Maso G. Dal, Mosco U. :
Wiener criteria and energy decay for relaxed Dirichlet problems. Arch. Rational Mech. Anal. 95 (1986), 345–387.
MR 0853783
[9] Maz’ya V. G.:
On the continuity at a boundary point of solutions of quasilinear elliptic equations. Vestnik Leningrad Univ., Mat. 3 (1976), 225–242; English transl.: Vestnik Leningrad Univ. 25 (1970), 42–55.
MR 0274948
[10] Gariepy R., Ziemer W. P. :
A regularity condition at the boundary for solutions of quasilinear elliptic equations. Arch. Rational Mech. Anal. 67 (1977), 25–39.
MR 0492836 |
Zbl 0389.35023
[11] Adams D. R., Hedberg L. I. :
Functions spaces and potential theory. Springer-Verlag, Berlin 1995.
MR 1411441
[12] Lindqvist P., Martio O. :
Two theorems of N. Wiener for solutions of quasilinear elliptic equations. Acta Math. 155 (1985), 153–171.
MR 0806413 |
Zbl 0607.35042
[13] Kilpeläinen T., Malý J. : The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172 (1994), 137–161.
[14] Malý J., Ziemer W. P. :
Regularity of solutions of elliptic partial differential equations. Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI 1997.
MR 1461542 |
Zbl 0882.35001
[16] Maz’ya V. G. : On the behavior near the boundary of solutions to the Dirichlet problem for the biharmonic operator. Dokl. Akad. Nauk SSSR, 18 (1977), 15–19. English transl.: Soviet Math. Dokl. 18 (1977), 1152–1155 (1978).
[17] Maz’ya V. G. : Behavior of solutions to the Dirichlet problem for the biharmonic operator at a boundary point. In: Equadiff IV, Lecture Notes in Math. 703, Springer-Verlag, Berlin 1979, 250–262.
[18] Maz’ya V. G. Donchev T. :
On the Wiener regularity of a boundary point for the polyharmonic operator. Dokl. Bolg. AN 36 (1983), 177–179; English transl.: Amer. Math. Soc. Transl. 137 (1987), 53–55.
MR 0709006
[19] Maz’ya V. G. :
Unsolved problems connected with the Wiener criterion. The Legacy of Norbert Wiener: A Centennial Symposium, Proc. Symp. Pure Math. vol. 60, American Mathematical Society, Providence, RI 1997, 199-208.
MR 1460283 |
Zbl 0883.35050
[20] Maz’ya V. G. :
On the regularity at the boundary of solutions to elliptic equations and conformal mappings. Dokl. Akad. Nauk SSSR 152 (1963), 1297–1300. English transl.: Soviet Math. Dokl. 4 (1963), 1547–1551.
MR 0163053
[21] Maz’ya V. G. :
Behavior near the boundary of solution to the Dirichlet problem for the second order elliptic operator in divergence form. Mat. Zametki 2 (1967), 209–220.
MR 0219873
[22] Maz’ya V. G. :
On the continuity modulus of a harmonic function at a boundary point. Zapiski Nauch. Sem. LOMI, Leningrad, Nauka, 135 (1981), 87–95.
MR 0741698
[23] Björn J., Maz’ya V. G. :
Capacitary estimates for solutions of the Dirichlet problem for second order elliptic equations in divergence form. Report LiTH-MAT-R-97-16, Linköping University.
Zbl 0961.35035
[24] Maz’ya V. G. Tashchiyan G. M. :
On the behavior of the gradient of a solution of the Dirichlet problem for the biharmonic equation near a boundary point of a three-dimensional domain. Sibirsk. Math. Zh. 31 (1990), 113–126. English transl.: Siberian Math. J. 31 (1991), 970–982.
MR 1097961
[25] Maz’ya V. G. Plamenevskii B. A. :
On the maximum principle for the biharmonic equation in a domain with conic points. Izv. Vyssh. Ucheb. Zaved. Mat. 2 (1981), 52–59. English transl.: Soviet Math. (Izv. VUZ) 25 (1981), 61–70.
MR 0614817
[26] Maz’ya V. G. Plamenevskii B. A. :
Properties of solutions to three-dimensional problems of elasticity theory and hydrodynamics in domains with isolated singular points. Dinamika sploshnoy sredy, Novosibirsk 50 (1981), 99–121.
MR 0639068
[27] Maz’ya V. G. Nasarow S. A., Plamenevskii B. A. : Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1, Akademie-Verlag, Berlin 1991.
[28] Maz’ya V. G. Nazarov S. A. :
The vertex of a cone can be irregular in the Wiener sense for an elliptic equation of the fourth order. Mat. Zametki 39 (1986), 24–28. English transl.: Math. Notes 39 (1986), 14–16.
MR 0830840
[29] Kozlov V. A., Maz’ya V. G. :
Spectral properties of operator pencils generated by elliptic boundary value problems in a cone. Funktsional. Anal. i Prilozhen. 22 (1988), 38–46. English transl.: Functional Anal. Appl. 22 (1988), 114–121.
MR 0947604
[31] Carathéodory C. : Vorlesungen über reelle Funktionen. Leipzig and Berlin, 1918.
[32] Vainberg M. M. :
Variational methods for the study of nonlinear operators. Holden-Day, San Francisco 1964.
MR 0176364 |
Zbl 0122.35501
[33] Eilertsen S. : On weighted positivity of certain differential and pseudodifferential operators. Linköping Studies in Science and Technology. Theses No. 617, 1997.