Previous |  Up |  Next

Article

References:
[Ad] Adams D.R. : A sharp inequality of J. Moser for higher order derivatives. Annals of Math. 128 (1988), 385–398. MR 0960950 | Zbl 0672.31008
[Av] Avantaggiati A. : On compact imbedding theorems in weighted Sobolev spaces. Czechoslovak Math. J. 29 (104) (1979), 635–648. MR 0548224
[BR] Bennett C., Rudnick K. : On Lorentz-Zygmund spaces. Dissert. Math. 175 (1980), 1–72. MR 0576995 | Zbl 0456.46028
[BS] Bennett C., Sharpley R. : Interpolation of Operators. Academic Press, Boston 1988. MR 0928802 | Zbl 0647.46057
[B] Boyd D. W. : Indices of function spaces and their relationship to interpolation. Canad. J. Math. 21 (1969), 1245–1254. MR 0412788 | Zbl 0184.34802
[BW] Brézis H., Wainger S. : A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Diff. Eq. 5 (1980), 773–789. MR 0579997 | Zbl 0437.35071
[Ca] Calderón A. P. : Spaces between $L^1$ and $L^\infty $ and the theorem of Marcinkiewicz. Studia Math. 26 (1966), 273–299. MR 0203444
[CPSS] Carro M. J., Pick L., Soria J., Stepanov V. D. : On embeddings between classical Lorentz spaces. Centre de Recerca Barcelona, preprint no. 385 (1998), 1–36. MR 1841071
[Ci] Cianchi A. : A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 (1996), 39–65. MR 1406683 | Zbl 0860.46022
[CPi] Cianchi A., Pick L. : Sobolev embeddings into . BMO, VMO, and $L_\infty $. Ark. Mat. 36 (1998), 317–340. MR 1650446 | Zbl 1035.46502
[CPu] Cwikel M., Pustylnik E. : Sobolev type embeddings in the limiting case. To appear in J. Fourier Anal. Appl. MR 1658620 | Zbl 0930.46027
[EGO] Edmunds D. E., Gurka P., Opic B. : Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19–43. MR 1336431 | Zbl 0826.47021
[EKP] Edmunds D. E., Kerman R. A., Pick L. : Optimal Sobolev embeddings involving rearrangement-invariant quasinorms. To appear. MR 1740655
[EOP] Evans W. D., Opic B., Pick L. : Interpolation of operators on scales of generalized Lorentz-Zygmund spaces. Math. Nachr. 182 (1996), 127–181. MR 1419893 | Zbl 0865.46016
[F] Fiorenza A. : A summability condition on the gradient ensuring $BMO$. To appear in Rev. Mat. Univ. Complut. Madrid. Zbl 0926.46028
[GHS] dman M. L. Gol,’ Heinig H. P., Stepanov V. D. : On the principle of duality in Lorentz spaces. Canad. J. Math. 48 (1996), 959–979. MR 1414066
[H] Hansson K. : Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45 (1979), 77–102. MR 0567435 | Zbl 0437.31009
[HMT] Hempel J. A., Morris G. R., Trudinger N. S. : On the sharpness of a limiting case of the Sobolev imbedding theorem. Bull. Australian Math. Soc. 3 (1970), 369–373. MR 0280998 | Zbl 0205.12801
[JN] John F., Nirenberg L. : On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415–426. MR 0131498 | Zbl 0102.04302
[Ka] Kabaila V. P. : On embeddings of the space $L_p(\mu )$ into $L_r(\nu )$. (Russian). Lit. Mat. Sb. 21 (1981), 143–148. MR 0641511
[Ke1] Kerman R. A. : Function spaces continuously paired by operators of convolution-type. Canad. Math. Bull. 22 (1979), 499–507. MR 0563765 | Zbl 0428.46024
[Ke2] Kerman R. A. : An integral extrapolation theorem with applications. Studia Math. 76 (1983), 183–195. MR 0729102 | Zbl 0479.46015
[M] Maz’ya V. G. : Sobolev Spaces. Springer-Verlag, Berlin 1985. MR 0817985
[O] Neil R. O,’ : Convolution operators and $L_{(p,q)}$ spaces. Duke Math. J. 30 (1963), 129–142. MR 0146673
[OK] Opic B., Kufner A. : Hardy-type inequalities. Pitman Research Notes in Mathematics, Longman Sci & Tech. Harlow 1990. MR 1069756 | Zbl 0698.26007
[OP] Opic B., Pick L. : On generalized Lorentz-Zygmund spaces. To appear. MR 1698383 | Zbl 0956.46020
[Pe] Peetre J. : Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier 16 (1966), 279–317. MR 0221282 | Zbl 0151.17903
[Po] Pokhozhaev S. I. : On eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. (Russian). Dokl. Akad. Nauk SSSR 165 (1965), 36–39. MR 0192184
[Pu] Preprint E. Pustylnik : Optimal interpolation in spaces of Lorentz-Zygmund type. 1998, ,. MR 1749309
[Sa] Sawyer E. T. : Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96 (1990), 145–158. MR 1052631 | Zbl 0705.42014
[Sh] Sharpley R. : Counterexamples for classical operators in Lorentz-Zygmund spaces. Studia Math. 68 (1980), 141–158. MR 0599143
[Sob] Sobolev S. L. : Applications of Functional Analysis in Mathematical Physics. Transl. of Mathem. Monographs, American Math. Soc., Providence, RI 7 (1963). MR 0165337 | Zbl 0123.09003
[Sor] Soria J. : Lorentz spaces of weak-type. Quart. J. Math. Oxford 49 (1998), 93–103. MR 1617343 | Zbl 0943.42010
[St] Stepanov V. D. : The weighted Hardy inequality for nonincreasing functions. Trans. Amer. Math. Soc. 338 (1993), 173–186. MR 1097171
[Str] Strichartz R. S. : A note on Trudinger’s extension of Sobolev’s inequality. Indiana Univ. Math. J. 21 (1972), 841–842. MR 0293389
[Ta] Talenti G. : Inequalities in rearrangement-invariant function spaces. In: Nonlinear Analysis, Function Spaces and Applications, Vol. 5. M. Krbec, A. Kufner, B. Opic and J. Rákosník (eds.), Prometheus Publishing House, Prague 1995, 177–230. MR 1322313
[Tr] Trudinger N. S. : On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–483. MR 0216286 | Zbl 0163.36402
[W] Wainger S. : Special trigonometric series in $k$-dimension. Mem. Amer. Math. Soc. 59 (1965), 1–102. MR 0182838
[Y] operators V. I. Yudovich : Some estimates connected with integral, 1961, with solutions of elliptic equations. Soviet Math. Doklady 2 (,) 749, 746–,.
[Z] Ziemer W. P. : Weakly differentiable functions. Graduate texts in Math. 120, Springer, New York 1989. MR 1014685 | Zbl 0692.46022
[Zy] Zygmund A. : Trigonometric Series. Cambridge University Press, Cambridge 1957.
Partner of
EuDML logo