[1] Aggarwal, A., Chakradar, M., Bhatia, M. S., Kumar, M., Stephan, T., Gupta, S. K., Alsamhi, H. S., AL-Dois, H.:
COVID-19 Risk prediction for diabetic patients using fuzzy inference system and machine learning approaches. J. Healthcare Engrg. (2022), Article ID 4096950.
DOI
[2] Amrahov, S. E., Ar, Y., Tugrul, B., Akay, B. E., Kartli, N.:
A new approach to Mergesort algorithm: Divide smart and conquer. Future Generation Computer Systems 157 (2024), 330-343.
DOI
[3] Ansarifar, J., Wang, L., Archontoulis, S. V.:
An interaction regression model for crop yield prediction. Scientific Reports 11 (2021), Article ID 17754.
DOI
[4] Ao, Y., Li, H., Zhu, L., Ali, S., Yang, Z.:
The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J. Petroleum Sci. Engrg. 174 (2019), 776-789.
DOI
[5] Ar, Y., Amrahov, S. E., Gasilov, N. A., Yigit-Sert, S.:
A new curve fitting based rating prediction algorithm for recommender systems. Kybernetika 58 (2022), 3, 440-455.
DOI
[6] Avelar, E., Castillo, O., Soria, J.:
Fuzzy logic controller with fuzzylab Python library and the robot operating system for autonomous mobile robot navigation. J. Automat. Mobile Robotics Intell. Systems 14 (2019), 1, 48-54.
DOI
[7] Avelar, E.: FuzzyLab.
[8] Bas, E., Egrioglu, E.:
A fuzzy regression functions approach based on Gustafson-Kessel clustering algorithm. Inform. Sci. 592 (2022), 206-214.
DOI
[9] Bas, E.:
Robust fuzzy regression functions approaches. Inform. Sci. 613 (2022), 419-434.
DOI
[10] Bejines, C.:
Aggregation of fuzzy vector spaces. Kybernetika 59 (2023), 5, 752-767.
DOI |
MR 4681021
[11] Chakraverty, S., Sahoo, D. M., Mahato, N. R.:
Defuzzification. In: Concepts of Soft Computing, Springer, Singapore 2019.
DOI
[12] Charizanos, G., Demirhan, H., İçen, D.:
A Monte Carlo fuzzy logistic regression framework against imbalance and separation. Inform. Sci. 655 (2024), 119893.
DOI
[13] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R. I.:
An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 1, 160-178.
DOI |
MR 4567846
[14] Ding, W., Wang, J., Huang, J., Cheng, C., Jiang, S.:
MFCA: Collaborative prediction algorithm of brain age based on multimodal fuzzy feature fusion. Inform. Sci. 687 (2025), 121376.
DOI
[15] Doz, D., Cotič, M., Felda, D.:
Random forest regression in predicting students' achievements and fuzzy grades. Mathematics 11 (2023), 19, 4129.
DOI
[16] Fiskin, R., Atik, O., Kisi, H., Nasibov, E., Johansen, T. A.:
Fuzzy domain and meta-heuristic algorithm-based collision avoidance control for ships: Experimental validation in virtual and real environment. Ocean Engrg. 220 (2021), 108502.
DOI
[17] Gao, K., Xu, L.:
Novel strategies based on a gradient boosting regression tree predictor for dynamic multi-objective optimization. Expert Syst. Appl. 237 (2024), 121532.
DOI
[18] Gao, T., Liu, J.:
Application of improved random forest algorithm and fuzzy mathematics in physical fitness of athletes. J. Intell. Fuzzy Syst. 40 (2021), 2, 2041-2053.
DOI
[19] Gasilov, N. A., Amrahov, S. E., Fatullayev, A. G.:
On a solution of the fuzzy Dirichlet problem for the heat equation. Int. J. Thermal Sci. 103 (2016), 67-76.
DOI
[20] Gasilov, N., Doğan, M., Arici, V.:
Two-stage shortest path algorithm for solving optimal obstacle avoidance problem. IETE J. Res. 57 (2011), 3, 278-285.
DOI
[21] Gilda, K. S., Satarkar, S. L.: Analytical overview of defuzzification methods. Int. J. Advance Res. Ideas Innova. Technol. 6 (2020), 2, 359-365.
[22] Gu, X., Angelov, P. P., Shen, Q.:
Semi-supervised fuzzily weighted adaptive boosting for classification. IEEE Trans. Fuzzy Systems 32 (2024), 4, 2318-2330.
DOI 10.1109/TFUZZ.2024.3349637
[23] Guan, X., Yu, F., Xu, H., Li, C., Guan, Y.: Flood risk assessment of urban metro system using random forest algorithm and triangular fuzzy number based analytical hierarchy process approach. Sustainable Cities Soc. 109 (2024), 105546.
[24] Jang, J. S. R., Sun, C. T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, 1997.
[25] Karaboga, D., Kaya, E.:
Adaptive network based fuzzy inference system (ANFIS) training approaches: A comprehensive survey. Artif. Intell. Rev. 52 (2019), 2263-2293.
DOI 10.1007/s10462-017-9610-2
[26] Kartli, N., Bostanci, E., Guzel, M. S.:
A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 1, 45-63.
DOI |
MR 4567841
[27] Kartli, N., Bostanci, E., Guzel, M. S.:
Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227.
DOI |
MR 4794582
[29] Kondratenko, Y., Kozlov, O., Lysiuk, H., Kryvda, V., Maksymova, O.: Fuzzy automatic control of the pyrolysis process for the municipal solid waste of variable composition. J. Automat. Mobile Robotics Intell. Systems 16 (2022), 1, 83-94.
[30] Kusumadewi, S., Rosita, L., Wahyuni, E. G.:
Selection of aggregation function in fuzzy inference system for metabolic syndrome. Int. J. Advanced Sci. Engrg. Inform. Technol. 12 (2022), 5, 2140.
DOI
[31] Kusumadewi, S., Rosita, L., Wahyuni, E. G.:
Fuzzy linear regression based on a hybrid of fuzzy C-means and the fuzzy inference system for predicting serum iron levels in patients with chronic kidney disease. Expert Syst. Appl. 227 (2023), 120314.
DOI
[32] Li, G., Hu, X., Chen, S., Chang, K., Li, P., Wang, Y.:
Peak load forecasting using grammatical evolution-based fuzzy regression approach. Int. J. Comput. Commun. Control 19 (2024), 4, 6611.
DOI
[33] Mallick, A. K., Das, A.:
An analytical survey of defuzzification techniques. In: 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur 2021. pp. 1-6.
DOI
[34] Mei, Z., Zhao, T., Xie, X.:
Hierarchical fuzzy regression tree: A new gradient boosting approach to design a TSK fuzzy model. Inform. Sci. 652 (2024), 119740.
DOI 10.1016/j.ins.2023.119740
[35] Mert, A.:
Shannon entropy-based approach for calculating values of WABL parameters. J. Taibah Univ. Sci. 14 (2020), 1, 1100-1109.
DOI 10.1080/16583655.2020.1804157
[36] Nachaoui, M., Nachaoui, A., Shikhlinskaya, R. Y., Elmoufidi, A.:
An improved hybrid defuzzification method for fuzzy controllers. Statist. Optim. Inform. Comput. 11 (2023), 1, 29-43.
DOI 10.19139/soic-2310-5070-1706
[37] Namgung, H., Ohn, S. W.:
Fuzzy inference and sequence model-based collision risk prediction system for stand-on vessel. Sensors 22 (2022), 13.
DOI
[38] Nasiboglu, R., Abdullayeva, R.:
Analytical formulations for the level based weighted average value of discrete trapezoidal fuzzy numbers. Int. J. Soft Comput. (IJSC) 9 (2018), 2/3, 1-15.
DOI 10.5121/ijsc.2018.9301
[39] Nasiboglu, R., Akdogan, A.: Estimation of the second hand car prices from data extracted via web scraping techniques. J. Modern Technol. Engrg. 5 (2020), 2, 157-166.
[40] Nasiboglu, R., Erten, Z. T.:
A new model to determine the hierarchical structure of the wireless sensor networks. Turkish J. Electr. Engrg. Computer Sci. 27 (2019), 6, 4023-4037.
DOI 10.3906/elk-1811-142
[41] Nasiboglu, R., Nasibov, E.:
FyzzyGBR - A gradient boosting regression software with fuzzy target values. Software Impacts 14 (2022), 100430.
DOI 10.1016/j.simpa.2022.100430
[42] Nasiboglu, R., Nasibov, E.:
WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model. Expert Syst. Appl. 212 (2023), 118771.
DOI 10.1016/j.eswa.2022.118771
[43] Nasiboglu, R.: A novel fuzzy inference model with rule-based defuzzification approach. J. Modern Technol. Engrg. 7 (2022), 2, 124-133.
[44] Nasiboglu, R.: An approach to solution of verbal stated mathematical problems. J. Modern Technol. Engrg. 5 (2020), 1, 25-35.
[45] Nasiboglu, R.: Analysis of different approaches to regression problem with fuzzy information. J. Modern Technol. Engrg. 7 (2022), 3, 187-198.
[46] Nasibov, E. N., Kinay, A. O.:
An iterative approach for estimation of student performances based on linguistic evaluations. Inform. Sci. 179 (2009), 5, 688-698.
DOI
[47] Nasibov, E. N., Mert, A.:
On methods of defuzzification of parametrically represented fuzzy numbers. Automat. Control Computer Sci. 41 (2007), 265-273.
DOI
[48] Pourabdollah, A., Mendel, J. M., John, R. I.:
Alpha-cut representation used for defuzzification in rule-based systems. Fuzzy Sets Syst. 399 (2020), 110-132.
MR 4154438
[49] Ramly, N., Rusiman, M. S., Nasibov, E., Nasiboglu, R.:
The comparison of fuzzy regression approaches with and without clustering method in predicting manufacturing income. J. Advanced Res. Appl. Sci. Engrg. Technol. 46 (2024), 1, 218-236.
DOI 10.37934/araset.46.1.218236
[50] Rashidi, S., Xu, W., Lin, D., Turpin, A., Kulik, L., Ehinger, K.: An active foveated gaze prediction algorithm based on a Bayesian ideal observer. Pattern Recogn. 143 (2023), 109694.
[51] Riman, C. F., Abi-Char, P. E.:
Fuzzy logic control for mobile robot navigation in automated storage. Int. J. Mechan. Engrg. Robotics Res. 12 (2023), 5, 313-323.
DOI 10.18178/ijmerr.12.5.313-323
[52] Savaş, S. K., Nasibov, E. N.:
A fuzzy ID3 induction for linguistic data sets. Int. J. Intell. Syst. 33 (2018), 858-878.
DOI
[53] Samet, R., Amrahov, S. E., Ziroğlu, A. H.:
Fuzzy Rule-based image segmentation technique for rock thin section images. In: 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), Istanbul 2012. pp. 402-406.
DOI
[54] Tian, Y., Nie, G., Tian, H., Cui, Q.:
Impact of endpoint structure attributes on local information algorithms based on link prediction. Computing 105 (2023), 1, 115-129.
DOI 10.1007/s00607-022-01115-z |
MR 4530130
[55] Vafakhah, M., Loor, S. M. H., Pourghasemi, H., Katebikord, A.: Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping. Arabian J. Geosci. 13 (2020), 1-16.
[56] Wahba, M., Essam, R., El-Rawy, M., Al-Arifi, N., Abdalla, F., Elsadek, W. M.:
Forecasting of flash flood susceptibility mapping using random forest regression model and geographic information systems. Heliyon 10 (2024), 13, e33982.
DOI
[57] Yagiz, S., Gokceoglu, C.:
Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness. Expert Systems Appl. 37 (2010), 2265-2272.
DOI 10.1016/j.eswa.2009.07.046
[58] Yazid, E., Garratt, M., Santoso, F.:
Position control of a quadcopter drone using evolutionary algorithms-based self-tuning for first-order Takagi-Sugeno-Kang fuzzy logic autopilots. Appl. Soft Comput. 78 (2019), 373-392.
DOI
[59] Yıldırım, H. B., Kullu, K., Amrahov, S. E.:
A graph model and a three-stage algorithm to aid the physically disabled with navigation. Univ. Acces Inform. Soc. 23 (2024), 2, 901-911.
DOI
[60] Zhang, H., Hu, X., Zhu, X., Liu, X., Pedrycz, W.:
Application of gradient boosting in the design of fuzzy rule-based regression models. IEEE Trans. Knowl. Data Engrg. 36 (2024), 5621-5632.
DOI
[61] Zhang, Q., Yao, Y., Kong, J., Ma, X., Zhu, H.:
A new GNSS TEC neural network prediction algorithm with the data fusion of physical observation. IEEE Trans. Geosci. Remote Sensing 61 (2023), 1-12.
DOI
[62] Zhu, X., Hu, X., Yang, L., Pedrycz, W., Li, Z.:
A development of fuzzy rule-based regression models through using decision trees. IEEE Trans. Fuzzy Systems 32 (2024), 5, 2976-2986.
DOI
[63] Zimmermann, K.:
Combination of t-norms and their conorms. Kybernetika 59 (2023), 4, 527-536.
DOI |
MR 4660376