Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
acoustic waveguides; well-posedness analysis
Summary:
A model two-dimensional acoustic waveguide with lateral impedance boundary conditions (and outgoing boundary conditions at the waveguide outlet) is considered. The governing operator is proved to be bounded below with a stability constant inversely proportional to the length of the waveguide. The presence of impedance boundary conditions leads to a non self-adjoint operator which considerably complicates the analysis. The goal of this paper is to elucidate these complications and tools that are applicable, as simply as possible. This work is a continuation of prior waveguide studies (where self-adjoint operators arose) by J. M. Melenk et al. (2023), and L. Demkowicz et al. (2024).
References:
[1] Bari, N. K.: Biorthogonal systems and bases in Hilbert space. Moskov. Gos. Univ. Učenye Zapiski Matematika 148/4 (1951), 69-107 Russian. MR 0050171
[2] Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions. Numer. Methods Partial Differ. Equations 27 (2011), 70-105. DOI 10.1002/num.20640 | MR 2743600 | Zbl 1208.65164
[3] Demkowicz, L., Gopalakrishnan, J., Muga, I., Zitelli, J.: Wavenumber explicit analysis for a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Eng. 213-216 (2012), 126-138. DOI 10.1016/j.cma.2011.11.024 | MR 2880509 | Zbl 1243.76059
[4] Demkowicz, L., Melenk, J. M., Badger, J., Henneking, S.: Stability analysis for electromagnetic waveguides. II. Non-homogeneous waveguides. Adv. Comput. Math. 50 (2024), Article ID 35, 32 pages. DOI 10.1007/s10444-024-10130-x | MR 4739882 | Zbl 07845580
[5] Glazman, I. M.: On expansibility in a system of eigenelements of dissipative operators. Usp. Mat. Nauk 13 (1958), 179-181 Russian. MR 0097726 | Zbl 0081.12204
[6] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs 18. AMS, Providence (1969). DOI 10.1090/mmono/018 | MR 0246142 | Zbl 0181.13503
[7] Halla, M.: On the existence and stability of modified Maxwell Steklov eigenvalues. SIAM J. Math. Anal. 55 (2023), 5445-5463. DOI 10.1137/22M1509266 | MR 4649397 | Zbl 1527.35190
[8] Keldyš, M. V.: On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations. Dokl. Akad. Nauk SSSR, N. Ser. 77 (1951), 11-14 Russian. MR 0041353 | Zbl 0045.39402
[9] Melenk, J. M., Demkowicz, L., Henneking, S.: Stability analysis for electromagnetic waveguides. I. Acoustic and Homogeneous Electromagnetic Waveguides. Available at https://arxiv.org/abs/2307.04521 (2023), 45 pages. DOI 10.48550/arXiv.2307.04521 | MR 4739882
[10] Schwartz, J. T.: Perturbations of spectral operators, and applications. I. Bounded perturbations. Pac. J. Math. 4 (1954), 415-458. DOI 10.2140/pjm.1954.4.415 | MR 0063568 | Zbl 0056.34901
Partner of
EuDML logo