Previous |  Up |  Next

Article

Title: Stability analysis for acoustic waveguides. Part 3: impedance boundary conditions (English)
Author: Demkowicz, Leszek
Author: Gopalakrishnan, Jay
Author: Heuer, Norbert
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 5
Year: 2024
Pages: 633-651
Summary lang: English
.
Category: math
.
Summary: A model two-dimensional acoustic waveguide with lateral impedance boundary conditions (and outgoing boundary conditions at the waveguide outlet) is considered. The governing operator is proved to be bounded below with a stability constant inversely proportional to the length of the waveguide. The presence of impedance boundary conditions leads to a non self-adjoint operator which considerably complicates the analysis. The goal of this paper is to elucidate these complications and tools that are applicable, as simply as possible. This work is a continuation of prior waveguide studies (where self-adjoint operators arose) by J. M. Melenk et al. (2023), and L. Demkowicz et al. (2024). (English)
Keyword: acoustic waveguides
Keyword: well-posedness analysis
MSC: 35Q61
MSC: 78A50
DOI: 10.21136/AM.2024.0080-24
.
Date available: 2024-11-05T12:04:10Z
Last updated: 2024-11-05
Stable URL: http://hdl.handle.net/10338.dmlcz/152635
.
Reference: [1] Bari, N. K.: Biorthogonal systems and bases in Hilbert space.Moskov. Gos. Univ. Učenye Zapiski Matematika 148/4 (1951), 69-107 Russian. MR 0050171
Reference: [2] Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions.Numer. Methods Partial Differ. Equations 27 (2011), 70-105. Zbl 1208.65164, MR 2743600, 10.1002/num.20640
Reference: [3] Demkowicz, L., Gopalakrishnan, J., Muga, I., Zitelli, J.: Wavenumber explicit analysis for a DPG method for the multidimensional Helmholtz equation.Comput. Methods Appl. Mech. Eng. 213-216 (2012), 126-138. Zbl 1243.76059, MR 2880509, 10.1016/j.cma.2011.11.024
Reference: [4] Demkowicz, L., Melenk, J. M., Badger, J., Henneking, S.: Stability analysis for electromagnetic waveguides. II. Non-homogeneous waveguides.Adv. Comput. Math. 50 (2024), Article ID 35, 32 pages. Zbl 07845580, MR 4739882, 10.1007/s10444-024-10130-x
Reference: [5] Glazman, I. M.: On expansibility in a system of eigenelements of dissipative operators.Usp. Mat. Nauk 13 (1958), 179-181 Russian. Zbl 0081.12204, MR 0097726
Reference: [6] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18. AMS, Providence (1969). Zbl 0181.13503, MR 0246142, 10.1090/mmono/018
Reference: [7] Halla, M.: On the existence and stability of modified Maxwell Steklov eigenvalues.SIAM J. Math. Anal. 55 (2023), 5445-5463. Zbl 1527.35190, MR 4649397, 10.1137/22M1509266
Reference: [8] Keldyš, M. V.: On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations.Dokl. Akad. Nauk SSSR, N. Ser. 77 (1951), 11-14 Russian. Zbl 0045.39402, MR 0041353
Reference: [9] Melenk, J. M., Demkowicz, L., Henneking, S.: Stability analysis for electromagnetic waveguides. I. Acoustic and Homogeneous Electromagnetic Waveguides.Available at https://arxiv.org/abs/2307.04521 (2023), 45 pages. MR 4739882, 10.48550/arXiv.2307.04521
Reference: [10] Schwartz, J. T.: Perturbations of spectral operators, and applications. I. Bounded perturbations.Pac. J. Math. 4 (1954), 415-458. Zbl 0056.34901, MR 0063568, 10.2140/pjm.1954.4.415
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo