[3] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.:
Computer-based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations. Numer. Methods Partial Differ. Equations 12 (1996), 347-392.
DOI 10.1002/num.1690120303 |
MR 1388445 |
Zbl 0854.65089
[6] Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.:
Superconvergence of discontinuous Galerkin method for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53 (2015), 1651-1671.
DOI 10.1137/140996203 |
MR 3365565 |
Zbl 1328.65195
[9] Cheng, Y., Shu, C.-W.:
Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47 (2010), 4044-4072.
DOI 10.1137/090747701 |
MR 2585178 |
Zbl 1208.65137
[11] Cockburn, B., Shu, C.-W.:
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52 (1989), 411-435.
DOI 10.2307/2008474 |
MR 0983311 |
Zbl 0662.65083
[13] Godunov, S. K.:
A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb., N. Ser. 47 (1959), 271-306.
MR 0119433 |
Zbl 0171.46204
[14] Kannan, R.:
A high order spectral volume formulation for solving equations containing higher spatial derivative terms: Formulation and analysis for third derivative spatial terms using the LDG discretization procedure. Commun. Comput. Phys. 10 (2011), 1257-1279.
DOI 10.4208/cicp.070710.100111a |
MR 2830847 |
Zbl 1388.65079