Previous |  Up |  Next

Article

Title: Superconvergence analysis of spectral volume methods for one-dimensional diffusion and third-order wave equations (English)
Author: Yin, Xu
Author: Cao, Waixiang
Author: Zhang, Zhimin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 5
Year: 2024
Pages: 545-570
Summary lang: English
.
Category: math
.
Summary: We present a unified approach to studying the superconvergence property of the spectral volume (SV) method for high-order time-dependent partial differential equations using the local discontinuous Galerkin formulation. We choose the diffusion and third-order wave equations as our models to illustrate approach and the main idea. The SV scheme is designed with control volumes constructed using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as GSV and RSV schemes, respectively. With a careful choice of numerical fluxes, we demonstrate that the schemes are stable and exhibit optimal error estimates. Furthermore, we establish superconvergence of the GSV and RSV for the solution itself and the auxiliary variables. To be more precise, we prove that the errors of numerical fluxes at nodes and for the cell averages are superconvergent with orders of ${\cal O}(h^{2k+1})$ and ${\cal O}(h^{2k} )$ for RSV and GSV, respectively. Superconvergence for the function value and derivative value approximations is also studied and the superconvergence points are identified at Gauss points and Radau points. Numerical experiments are presented to illustrate theoretical findings. (English)
Keyword: spectral volume method
Keyword: error estimate
Keyword: superconvergence
Keyword: high order \hbox {equation}
MSC: 65N15
MSC: 65N25
MSC: 65N30
DOI: 10.21136/AM.2024.0235-23
.
Date available: 2024-11-01T12:51:33Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152630
.
Reference: [1] An, J., Cao, W.: Any order spectral volume methods for diffusion equations using the local discontinuous Galerkin formulation.ESAIM, Math. Model. Numer. Anal. 57 (2023), 367-394. Zbl 1529.65096, MR 4555128, 10.1051/m2an/2023003
Reference: [2] Arnold, D. N.: An interior penalty finite element method with discontinuous elements.SIAM J. Numer. Anal. 19 (1982), 742-760. Zbl 0482.65060, MR 0664882, 10.1137/0719052
Reference: [3] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.: Computer-based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations.Numer. Methods Partial Differ. Equations 12 (1996), 347-392. Zbl 0854.65089, MR 1388445, 10.1002/num.1690120303
Reference: [4] Cao, W.: Unified analysis of any order spectral volume methods for diffusion equations.J. Sci. Comput. 96 (2023), Article ID 90, 31 pages. Zbl 1529.65031, MR 4629479, 10.1007/s10915-023-02309-z
Reference: [5] Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives.J. Sci. Comput. 72 (2017), 761-791. Zbl 1429.65226, MR 3673694, 10.1007/s10915-017-0377-z
Reference: [6] Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin method for two-dimensional hyperbolic equations.SIAM J. Numer. Anal. 53 (2015), 1651-1671. Zbl 1328.65195, MR 3365565, 10.1137/140996203
Reference: [7] Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations.SIAM J. Numer. Anal. 52 (2014), 2555-2573. Zbl 1331.65128, MR 3270187, 10.1137/130946873
Reference: [8] Cao, W., Zou, Q.: Analysis of spectral volume methods for 1D linear scalar hyperbolic equations.J. Sci. Comput. 90 (2022), Article ID 61, 29 pages. Zbl 1481.65206, MR 4357099, 10.1007/s10915-021-01715-5
Reference: [9] Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension.SIAM J. Numer. Anal. 47 (2010), 4044-4072. Zbl 1208.65137, MR 2585178, 10.1137/090747701
Reference: [10] Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations.Math. Comput. 74 (2005), 1067-1095. Zbl 1069.76029, MR 2136994, 10.1090/s0025-5718-04-01718-1
Reference: [11] Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework.Math. Comput. 52 (1989), 411-435. Zbl 0662.65083, MR 0983311, 10.2307/2008474
Reference: [12] Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems.SIAM J. Numer. Anal. 35 (1998), 2440-2463. Zbl 0927.65118, MR 1655854, 10.1137/S0036142997316712
Reference: [13] Godunov, S. K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics.Mat. Sb., N. Ser. 47 (1959), 271-306. Zbl 0171.46204, MR 0119433
Reference: [14] Kannan, R.: A high order spectral volume formulation for solving equations containing higher spatial derivative terms: Formulation and analysis for third derivative spatial terms using the LDG discretization procedure.Commun. Comput. Phys. 10 (2011), 1257-1279. Zbl 1388.65079, MR 2830847, 10.4208/cicp.070710.100111a
Reference: [15] Kannan, R., Wang, Z. J.: A study of viscous flux formulations for a $p$-multigrid spectral volume Navier Stokes solver.J. Sci. Comput. 41 (2009), 165-199. Zbl 1203.65160, MR 2550366, 10.1007/s10915-009-9269-1
Reference: [16] Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems.SIAM J. Numer. Anal. 47 (2009), 675-698. Zbl 1189.65227, MR 2475957, 10.1137/080720255
Reference: [17] Sun, Y., Wang, Z. J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids. VI. Extension to viscous flow.J. Comput. Phys. 215 (2006), 41-58. Zbl 1140.76381, MR 2215651, 10.1016/j.jcp.2005.10.019
Reference: [18] Wang, Z. J.: Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation.J. Comput. Phys. 178 (2002), 210-251. Zbl 0997.65115, MR 1899140, 10.1006/jcph.2002.7041
Reference: [19] Wang, Z. J., Zhang, L., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids. IV. Extension to two-dimensional Euler systems.J. Comput. Phys. 194 (2004), 716-741. Zbl 1039.65072, MR 2034862, 10.1016/j.jcp.2003.09.012
Reference: [20] Zhang, M., Shu, C.-W.: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods.Comput. Fluids 34 (2005), 581-592. Zbl 1138.76391, 10.1016/j.compfluid.2003.05.006
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo