Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
anisotropic Picone identity; variable exponent
Summary:
This paper introduces two novel nonlinear anisotropic Picone identities with variable exponents that expand upon the traditional identity used for the ordinary Laplace equation. Additionally, the research explores potential applications of these findings in anisotropic Sobolev spaces featuring variable exponents.
References:
[1] Abramowitz M., Stegun I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, 1964. MR 0167642 | Zbl 0643.33001
[2] Allegretto W.: Form estimates for the $p(x)$-Laplacean. Proc. Amer. Math. Soc. 135 (2007), no. 7, 2177–2185. DOI 10.1090/S0002-9939-07-08718-7 | MR 2299495
[3] Allegretto W., Huang Y. X.: A Picone's identity for the $p$-Laplacian and applications. Nonlinear Anal. 32 (1998), no. 7, 819–830. MR 1618334
[4] Boccardo L., Gallouët T., Marcellini P.: Anisotropic equations in $L^1$. Differential Integral Equations 9 (1996), no. 1, 209–212. DOI 10.57262/die/1367969997 | MR 1364043
[5] Chen Y., Levine S., Rao M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406. DOI 10.1137/050624522 | MR 2246061
[6] Fan X.: Anisotropic variable exponent Sobolev spaces and $\overrightarrow{p_i(x)}$-Laplacian equations. Complex Var. Elliptic Equ. 56 (2011), no. 7–9, 623–642. DOI 10.1080/17476931003728412 | MR 2832206
[7] Feng T., Cui X.: Anisotropic Picone identities and anisotropic Hardy inequalities. J. Inequal. Appl. 2017 (2017), Paper No. 16, 9 pages. MR 3596962
[8] Feng T., Han J.: A new variable exponent Picone identity and applications. Math. Inequal. Appl. 22 (2019), no. 1, 65–75. MR 3905971
[9] Feng T., Zhang K.: A nonlinear Picone identity for anisotropic Laplace operator and its applications. J. of Math. (PRC). 40 (2020), no. 3, 283–290.
[10] Jikov V. V., Kozlov S. M., Oleĭnik O. A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994. MR 1329546
[11] Khelifi H.: Anisotropic degenerate elliptic problem with singular gradient lower order term. Boll. Unione Mat. Ital. 17 (2024), no. 1, 149–174. DOI 10.1007/s40574-023-00395-3 | MR 4703444
[12] Khelifi H.: Anisotropic parabolic-elliptic systems with degenerate thermal conductivity. accepted at Applicable Analysis (2023), 33 pages. MR 4774280
[13] Khelifi H., Ait-Mahiout K.: Regularity for solutions of elliptic $p(x)-$Laplacian type equations with lower order terms and Hardy potential. accepted at Ricerche Mat. (2023). MR 4798155
[14] Khelifi H., El Hadfi Y.: Nonlinear elliptic equations with variable exponents involving singular nonlinearity. Math. Model. Comput. 8 (2021), no. 4, 705–715. DOI 10.23939/mmc2021.04.705
[15] Khelifi H., Mokhtari F.: Nonlinear degenerate anisotropic elliptic equations with variable exponents and $L^{1}$ data. J. Part. Diff. Eq. 33 (2020), no. 1, 1–16. MR 4218038
[16] Kováčik O., Rákosník J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. DOI 10.21136/CMJ.1991.102493 | MR 1134951
[17] Mihăilescu M., Pucci P., Rădulescu V.: Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. C. R. Math. Acad. Sci. Paris 345 (2007), no. 10, 561–566. DOI 10.1016/j.crma.2007.10.012 | MR 2374465
[18] Mihăilescu M., Rădulescu V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929–2937. DOI 10.1090/S0002-9939-07-08815-6 | MR 2317971
[19] Naceri M.: Singular anisotropic elliptic problems with variable exponents. Mem. Differ. Equ. Math. Phys. 85 (2022), 119–132. MR 4433412
[20] Picone M.: Sui valori eccezionali di un parametro da cui dipende un équazione differenziale lineare ordinaria del second órdine. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 (1910), 144 pages (Italian). MR 1556637
[21] Picone M.: Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo ordine. Rend. Mat. Acc. Lincei 17 (1911), no. 5, 213–219 (Italian).
[22] Yoshida N.: Picone identity for quasilinear elliptic equations with $p(x)$-Laplacians and Sturmianian comparison theory. Appl. Math. Comput. 225 (2013), 79–91. MR 3129631
[23] Zouatini M.A., Mokhtari F., Khelifi H.: Degenerate elliptic problem with singular gradient lower order term and variable exponents. Math. Model. Comput. 10 (2023), no. 1, 133–146. DOI 10.23939/mmc2023.01.133 | MR 4703444
Partner of
EuDML logo