Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
normed lattice; Banach lattice; positive cone; AM-space; AL-space; Banach lattice $C(K)$; Banach lattice $l^1(\Gamma)$; strong topology; weak topology; weak$^*$ topology; coincidence of topologies; metrizability; nonatomic measure
Summary:
Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma)$ for a set $\Gamma$. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.
References:
[1] Aliprantis C. D., Burkinshaw O.: Positive Operators. Pure and Applied Mathematics, 119, Academic Press, Orlando, 1985. MR 0809372 | Zbl 1098.47001
[2] Barroso C. S., Kalenda O. F. K., Lin P.-K.: On the approximate fixed point property in abstract spaces. Math. Z. 271 (2012), no. 3–4, 1271–1285. DOI 10.1007/s00209-011-0915-6 | MR 2945607
[3] Bauer H.: Measure and Integration Theory. De Gruyter Studies in Mathematics, 26, Walter de Gruyter, Berlin, 2001. MR 1897176
[4] Dilworth S. J.: A weak topology characterization of $l_1(m)$. Geometry of Banach Spaces, Strobl 1989, London Math. Soc. Lecture Note Ser., 158, Cambridge University Press, Cambridge, 1990, pages 89–94. MR 1110188
[5] Dunford N., Schwartz J. T.: Linear Operators. I. General Theory. Pure and Applied Mathematics, 7, Interscience Publishers, New York, 1958. MR 0117523
[6] Edgar G. A., Wheeler R. F.: Topological properties of Banach spaces. Pacific J. Math. 115 (1984), no. 2, 317–350. DOI 10.2140/pjm.1984.115.317 | MR 0765190
[7] Engelking R.: General Topology. Monografie Matematyczne, 60, PWN---Polish Scientific Publishers, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[8] Halmos P. R.: A Hilbert Space Problem Book. D. van Nostrand Co., Princeton, 1967. MR 0208368
[9] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures. IV. Manuscripta Math. 123 (2007), no. 2, 133–146. DOI 10.1007/s00229-007-0085-3 | MR 2306629 | Zbl 1118.28003
[10] Lipecki Z.: Order intervals in $C(K)$. Compactness, coincidence of topologies, metrizability. Comment. Math. Univ. Carolin. 63 (2022), no. 3, 295–306. MR 4542790
[11] Rudin W.: Functional Analysis. McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. MR 0365062 | Zbl 0867.46001
[12] Semadeni Z.: Banach Spaces of Continuous Functions. Vol. I. Monografie Matematyczne, 55, PWN---Polish Scientific Publishers, Warszawa, 1971. MR 0296671
[13] Varadarajan V. S.: Weak convergence of measures on separable metric spaces. Sankhyā 19 (1958), 15–22. MR 0094838
Partner of
EuDML logo