[1] An T. V., Tuyen L. Q.:
On $\pi$-images of separable metric spaces and a problem of Shou Lin. Matematički Vesnik 64 (250) (2012), 297–302.
MR 2965962
[2] Gao Z. M.:
$\aleph$-space is invariant under perfect mappings. Questions Answer Gen. Topology 5 (1987), no. 2, 271–279.
MR 0917885
[3] Ge Y.:
On pseudo-sequence coverings, $\pi$-images of metric spaces. Mat. Vesnik 57 (2005), no. 3–4, 113–120.
MR 2194600
[4] Ge Y., Gu J. S.:
On $\pi$-images of separable metric spaces. Sci. Ser. A Math. Sci. (N.S.) 10 (2004), 65–71.
MR 2127483
[5] Good C., Macías S.:
Symmetric products of generalized metric spaces. Topology Appl. 206 (2016), 93–114.
MR 3494434
[7] Li J. J.: Images of a Locally Separable Metric Space and Their Associated Results. Doctoral Thesis, Shandong University, Jinan, 2000 (in Chinese).
[9] Lin F., Shen R., Liu C.:
Generalized metric properties on hyperspaces with the Vietoris topology. Rocky Mountain J. Math. 51 (2021), no. 5, 1761–1779.
MR 4382997
[10] Lin S.:
Point-countable Covers and Sequence-Covering Mappings. China Science Press, Beijing, 2015 (in Chinese).
MR 1939779
[13] Liu C., Lin F.:
Hyperspaces with a countable character of closed subset. Topology Appl. 328 (2023), Paper No. 108461, 14 pages.
MR 4553037
[14] Liu C., Lin F.:
The quasi-metrizability of hyperspaces. Topology Appl. 338 (2023), Paper No. 108665, 11 pages.
MR 4629790
[15] Mou L., Li P., Lin S.:
Regular $G_\delta$-diagonals and hyperspaces. Topology Appl. 301 (2021), Paper No. 107530, 9 pages.
MR 4312980
[17] Tanaka Y., Ge Y.:
Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32 (2006), no. 1, 99–117.
MR 2202355
[19] Tuyen L. Q., Tuyen O. V.:
On the $n$-fold symmetric product of a space with a $\sigma$-$(P)$-property $cn$-network ($ck$-network). Comment. Math. Univ. Carolinae 61 (2020), no. 2, 257–263.
MR 4143708
[20] Tuyen L. Q., Tuyen O. V.:
A note on the hyperspace of finite subsets. Fasc. Math. 65 (2021), 67–73.
MR 4478558
[21] Tuyen L. Q., Tuyen O. V., Kočinac L. D. R.:
The Vietoris hyperspace $\mathcal F(X)$ and certain generalized metric properties. Hacet. J. Math. Stat. 53 (2024), no. 2, 356–366.
DOI 10.15672/hujms.1203236 |
MR 4741786
[22] Yan P.:
On strong sequence-covering compact mappings. Northeast. Math. J. 14 (1998), no. 3, 341–344.
MR 1685267 |
Zbl 0927.54030