Previous |  Up |  Next

Article

Title: About $wcs$-covers and $wcs^*$-networks on the Vietoris hyperspace $\mathcal F(X)$ (English)
Author: Tuyen, Luong Q.
Author: Tuyen, Ong V.
Author: Tuan, Phan D.
Author: Truc, Nguzen X.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 4
Year: 2023
Pages: 519-527
Summary lang: English
.
Category: math
.
Summary: We study some generalized metric properties on the hyperspace $\mathcal F(X)$ of finite subsets of a space $X$ endowed with the Vietoris topology. We prove that $X$ has a point-star network consisting of (countable) $wcs$-covers if and only if so does $\mathcal F(X)$. Moreover, $X$ has a sequence of $wcs$-covers with property $(P)$ which is a point-star network if and only if so does $\mathcal F(X)$, where $(P)$ is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. On the other hand, $X$ has a $wcs^*$-network with property $\sigma$-$(P)$ if and only if so does $\mathcal F(X)$. By these results, we obtain some results related to the images of metric spaces and separable metric spaces under some kinds of continuous mappings on the Vietoris hyperspace $\mathcal F(X)$. (English)
Keyword: hyperspace
Keyword: generalized metric property
Keyword: $wcs$-cover
Keyword: $wcs^*$-network
MSC: 54B20
MSC: 54C10
MSC: 54D20
MSC: 54E40
DOI: 10.14712/1213-7243.2024.011
.
Date available: 2024-11-05T11:54:58Z
Last updated: 2024-11-05
Stable URL: http://hdl.handle.net/10338.dmlcz/152619
.
Reference: [1] An T. V., Tuyen L. Q.: On $\pi$-images of separable metric spaces and a problem of Shou Lin.Matematički Vesnik 64 (250) (2012), 297–302. MR 2965962
Reference: [2] Gao Z. M.: $\aleph$-space is invariant under perfect mappings.Questions Answer Gen. Topology 5 (1987), no. 2, 271–279. MR 0917885
Reference: [3] Ge Y.: On pseudo-sequence coverings, $\pi$-images of metric spaces.Mat. Vesnik 57 (2005), no. 3–4, 113–120. MR 2194600
Reference: [4] Ge Y., Gu J. S.: On $\pi$-images of separable metric spaces.Sci. Ser. A Math. Sci. (N.S.) 10 (2004), 65–71. MR 2127483
Reference: [5] Good C., Macías S.: Symmetric products of generalized metric spaces.Topology Appl. 206 (2016), 93–114. MR 3494434
Reference: [6] Guthrie J. A.: A characterization of $ \aleph_0$-spaces.General Topology and Appl. 1 (1971), no. 2, 105–110. MR 0288726, 10.1016/0016-660X(71)90116-4
Reference: [7] Li J. J.: Images of a Locally Separable Metric Space and Their Associated Results.Doctoral Thesis, Shandong University, Jinan, 2000 (in Chinese).
Reference: [8] Li Z.: On $\pi$-$s$-images of metric spaces.Int. J. Math. Math. Sci. 7 (2005), no. 7, 1101–1107. MR 2170507, 10.1155/IJMMS.2005.1101
Reference: [9] Lin F., Shen R., Liu C.: Generalized metric properties on hyperspaces with the Vietoris topology.Rocky Mountain J. Math. 51 (2021), no. 5, 1761–1779. MR 4382997
Reference: [10] Lin S.: Point-countable Covers and Sequence-Covering Mappings.China Science Press, Beijing, 2015 (in Chinese). MR 1939779
Reference: [11] Lin S., Tanaka Y.: Point-countable $k$-networks, closed maps, and related results.Topology Appl. 59 (1994), no. 1, 79–86. Zbl 0817.54025, MR 1293119, 10.1016/0166-8641(94)90101-5
Reference: [12] Liu C., Lin F.: A note on hyperspaces by closed sets with Vietoris topology.Bull. Malays. Math. Sci. Soc. 45 (2022), no. 5, 1955–1974. MR 4489545, 10.1007/s40840-022-01349-2
Reference: [13] Liu C., Lin F.: Hyperspaces with a countable character of closed subset.Topology Appl. 328 (2023), Paper No. 108461, 14 pages. MR 4553037
Reference: [14] Liu C., Lin F.: The quasi-metrizability of hyperspaces.Topology Appl. 338 (2023), Paper No. 108665, 11 pages. MR 4629790
Reference: [15] Mou L., Li P., Lin S.: Regular $G_\delta$-diagonals and hyperspaces.Topology Appl. 301 (2021), Paper No. 107530, 9 pages. MR 4312980
Reference: [16] Peng L.-X., Sun Y.: A study on symmetric products of generalized metric spaces.Topology Appl. 231 (2017), 411–429. MR 3712980, 10.1016/j.topol.2017.09.036
Reference: [17] Tanaka Y., Ge Y.: Around quotient compact images of metric spaces, and symmetric spaces.Houston J. Math. 32 (2006), no. 1, 99–117. MR 2202355
Reference: [18] Tang Z., Lin S., Lin F.: Symmetric products and closed finite-to-one mappings.Topology Appl. 234 (2018), 26–45. MR 3739454, 10.1016/j.topol.2017.11.004
Reference: [19] Tuyen L. Q., Tuyen O. V.: On the $n$-fold symmetric product of a space with a $\sigma$-$(P)$-property $cn$-network ($ck$-network).Comment. Math. Univ. Carolinae 61 (2020), no. 2, 257–263. MR 4143708
Reference: [20] Tuyen L. Q., Tuyen O. V.: A note on the hyperspace of finite subsets.Fasc. Math. 65 (2021), 67–73. MR 4478558
Reference: [21] Tuyen L. Q., Tuyen O. V., Kočinac L. D. R.: The Vietoris hyperspace $\mathcal F(X)$ and certain generalized metric properties.Hacet. J. Math. Stat. 53 (2024), no. 2, 356–366. MR 4741786, 10.15672/hujms.1203236
Reference: [22] Yan P.: On strong sequence-covering compact mappings.Northeast. Math. J. 14 (1998), no. 3, 341–344. Zbl 0927.54030, MR 1685267
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo