Title: | About $wcs$-covers and $wcs^*$-networks on the Vietoris hyperspace $\mathcal F(X)$ (English) |
Author: | Tuyen, Luong Q. |
Author: | Tuyen, Ong V. |
Author: | Tuan, Phan D. |
Author: | Truc, Nguzen X. |
Language: | English |
Journal: | Commentationes Mathematicae Universitatis Carolinae |
ISSN: | 0010-2628 (print) |
ISSN: | 1213-7243 (online) |
Volume: | 64 |
Issue: | 4 |
Year: | 2023 |
Pages: | 519-527 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We study some generalized metric properties on the hyperspace $\mathcal F(X)$ of finite subsets of a space $X$ endowed with the Vietoris topology. We prove that $X$ has a point-star network consisting of (countable) $wcs$-covers if and only if so does $\mathcal F(X)$. Moreover, $X$ has a sequence of $wcs$-covers with property $(P)$ which is a point-star network if and only if so does $\mathcal F(X)$, where $(P)$ is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. On the other hand, $X$ has a $wcs^*$-network with property $\sigma$-$(P)$ if and only if so does $\mathcal F(X)$. By these results, we obtain some results related to the images of metric spaces and separable metric spaces under some kinds of continuous mappings on the Vietoris hyperspace $\mathcal F(X)$. (English) |
Keyword: | hyperspace |
Keyword: | generalized metric property |
Keyword: | $wcs$-cover |
Keyword: | $wcs^*$-network |
MSC: | 54B20 |
MSC: | 54C10 |
MSC: | 54D20 |
MSC: | 54E40 |
DOI: | 10.14712/1213-7243.2024.011 |
. | |
Date available: | 2024-11-05T11:54:58Z |
Last updated: | 2024-11-05 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152619 |
. | |
Reference: | [1] An T. V., Tuyen L. Q.: On $\pi$-images of separable metric spaces and a problem of Shou Lin.Matematički Vesnik 64 (250) (2012), 297–302. MR 2965962 |
Reference: | [2] Gao Z. M.: $\aleph$-space is invariant under perfect mappings.Questions Answer Gen. Topology 5 (1987), no. 2, 271–279. MR 0917885 |
Reference: | [3] Ge Y.: On pseudo-sequence coverings, $\pi$-images of metric spaces.Mat. Vesnik 57 (2005), no. 3–4, 113–120. MR 2194600 |
Reference: | [4] Ge Y., Gu J. S.: On $\pi$-images of separable metric spaces.Sci. Ser. A Math. Sci. (N.S.) 10 (2004), 65–71. MR 2127483 |
Reference: | [5] Good C., Macías S.: Symmetric products of generalized metric spaces.Topology Appl. 206 (2016), 93–114. MR 3494434 |
Reference: | [6] Guthrie J. A.: A characterization of $ \aleph_0$-spaces.General Topology and Appl. 1 (1971), no. 2, 105–110. MR 0288726, 10.1016/0016-660X(71)90116-4 |
Reference: | [7] Li J. J.: Images of a Locally Separable Metric Space and Their Associated Results.Doctoral Thesis, Shandong University, Jinan, 2000 (in Chinese). |
Reference: | [8] Li Z.: On $\pi$-$s$-images of metric spaces.Int. J. Math. Math. Sci. 7 (2005), no. 7, 1101–1107. MR 2170507, 10.1155/IJMMS.2005.1101 |
Reference: | [9] Lin F., Shen R., Liu C.: Generalized metric properties on hyperspaces with the Vietoris topology.Rocky Mountain J. Math. 51 (2021), no. 5, 1761–1779. MR 4382997 |
Reference: | [10] Lin S.: Point-countable Covers and Sequence-Covering Mappings.China Science Press, Beijing, 2015 (in Chinese). MR 1939779 |
Reference: | [11] Lin S., Tanaka Y.: Point-countable $k$-networks, closed maps, and related results.Topology Appl. 59 (1994), no. 1, 79–86. Zbl 0817.54025, MR 1293119, 10.1016/0166-8641(94)90101-5 |
Reference: | [12] Liu C., Lin F.: A note on hyperspaces by closed sets with Vietoris topology.Bull. Malays. Math. Sci. Soc. 45 (2022), no. 5, 1955–1974. MR 4489545, 10.1007/s40840-022-01349-2 |
Reference: | [13] Liu C., Lin F.: Hyperspaces with a countable character of closed subset.Topology Appl. 328 (2023), Paper No. 108461, 14 pages. MR 4553037 |
Reference: | [14] Liu C., Lin F.: The quasi-metrizability of hyperspaces.Topology Appl. 338 (2023), Paper No. 108665, 11 pages. MR 4629790 |
Reference: | [15] Mou L., Li P., Lin S.: Regular $G_\delta$-diagonals and hyperspaces.Topology Appl. 301 (2021), Paper No. 107530, 9 pages. MR 4312980 |
Reference: | [16] Peng L.-X., Sun Y.: A study on symmetric products of generalized metric spaces.Topology Appl. 231 (2017), 411–429. MR 3712980, 10.1016/j.topol.2017.09.036 |
Reference: | [17] Tanaka Y., Ge Y.: Around quotient compact images of metric spaces, and symmetric spaces.Houston J. Math. 32 (2006), no. 1, 99–117. MR 2202355 |
Reference: | [18] Tang Z., Lin S., Lin F.: Symmetric products and closed finite-to-one mappings.Topology Appl. 234 (2018), 26–45. MR 3739454, 10.1016/j.topol.2017.11.004 |
Reference: | [19] Tuyen L. Q., Tuyen O. V.: On the $n$-fold symmetric product of a space with a $\sigma$-$(P)$-property $cn$-network ($ck$-network).Comment. Math. Univ. Carolinae 61 (2020), no. 2, 257–263. MR 4143708 |
Reference: | [20] Tuyen L. Q., Tuyen O. V.: A note on the hyperspace of finite subsets.Fasc. Math. 65 (2021), 67–73. MR 4478558 |
Reference: | [21] Tuyen L. Q., Tuyen O. V., Kočinac L. D. R.: The Vietoris hyperspace $\mathcal F(X)$ and certain generalized metric properties.Hacet. J. Math. Stat. 53 (2024), no. 2, 356–366. MR 4741786, 10.15672/hujms.1203236 |
Reference: | [22] Yan P.: On strong sequence-covering compact mappings.Northeast. Math. J. 14 (1998), no. 3, 341–344. Zbl 0927.54030, MR 1685267 |
. |
Fulltext not available (moving wall 24 months)