Previous |  Up |  Next

Article

Title: The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$ (English)
Author: Jakubíková-Studenovská, Danica
Author: Pöschel, Reinhard
Author: Radeleczki, Sándor
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 295-303
Summary lang: English
.
Category: math
.
Summary: The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$. (English)
Keyword: endomorphism monoid
Keyword: congruence lattice
Keyword: quasiorder lattice
Keyword: finite algebra
MSC: 08A30
MSC: 08A35
MSC: 08A60
idZBL: Zbl 07953704
idMR: MR4801103
DOI: 10.21136/MB.2023.0133-22
.
Date available: 2024-09-11T13:44:27Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152535
.
Reference: [1] Halušková, E.: Strong endomorphism kernel property for monounary algebras.Math. Bohem. 143 (2018), 161-171. Zbl 1463.08003, MR 3831484, 10.21136/MB.2017.0056-16
Reference: [2] Halušková, E.: Some monounary algebras with EKP.Math. Bohem. 145 (2020), 401-414. Zbl 1499.08011, MR 4221842, 10.21136/MB.2019.0128-18
Reference: [3] Jakubíková-Studenovská, D.: On congruence relations of monounary algebras I.Czech. Math. J. 32 (1982), 437-459. Zbl 0509.08003, MR 0669786, 10.21136/CMJ.1982.101820
Reference: [4] Jakubíková-Studenovská, D.: On congruence relations of monounary algebras II.Czech. Math. J. 33 (1983), 448-466. Zbl 0535.08003, MR 0718928, 10.21136/CMJ.1983.101895
Reference: [5] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras.P. J. Šafárik University, Košice (2009). Zbl 1181.08001
Reference: [6] Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S.: The lattice of quasiorder lattices of algebras on a finite set.Algebra Univers. 75 (2016), 197-220. Zbl 1338.08005, MR 3515397, 10.1007/s00012-016-0373-4
Reference: [7] Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S.: The lattice of congruence lattices of algebras on a finite set.Algebra Univers. 79 (2018), Article ID 4, 23 pages. Zbl 1414.08001, MR 3770896, 10.1007/s00012-018-0486-z
Reference: [8] Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S.: The structure of the maximal congruence lattices of algebras on a finite set.J. Mult.-Val. Log. Soft Comput. 36 (2021), 299-320. Zbl 07536105, MR 4578804
Reference: [9] Janičková, L.: Monounary algebras containing subalgebras with meet-irreducible congruence lattice.Algebra Univers. 83 (2022), Article ID 36, 10 pages. Zbl 07573924, MR 4462594, 10.1007/s00012-022-00786-1
Reference: [10] Länger, H., Pöschel, R.: Relational systems with trivial endomorphisms and polymorphisms.J. Pure Appl. Algebra 32 (1984), 129-142. Zbl 0558.08004, MR 0741962, 10.1016/0022-4049(84)90048-3
Reference: [11] Pálfy, P. P.: Unary polynomials in algebras. I.Algebra Univers. 18 (1984), 262-273. Zbl 0546.08005, MR 0745492, 10.1007/BF01203365
Reference: [12] Quackenbush, R., Wolk, B.: Strong representation of congruence lattices.Algebra Univers. 1 (1971), 165-166. Zbl 0231.06006, MR 0295980, 10.1007/BF02944974
.

Files

Files Size Format View
MathBohem_149-2024-3_2.pdf 235.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo