Previous |  Up |  Next

Article

Title: Remark on regularity criterion for weak solutions to the shear thinning fluids (English)
Author: Kim, Jae-Myoung
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 287-294
Summary lang: English
.
Category: math
.
Summary: J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space $\Bbb {R}^3$ via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space. (English)
Keyword: shear thinning fluids
Keyword: regularity criterion
MSC: 35Q35
MSC: 76D05
idZBL: Zbl 07953703
idMR: MR4801102
DOI: 10.21136/MB.2023.0024-23
.
Date available: 2024-09-11T13:43:47Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152533
.
Reference: [1] Alghamdi, A. M., Gala, S., Ragusa, M. A., Yang, J. Q.: Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in $\Bbb R^3$.Comput. Appl. Math. 39 (2020), Article ID 234, 9 pages. Zbl 1463.35138, MR 4132926, 10.1007/s40314-020-01281-w
Reference: [2] Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics.McGraw-Hill, London (1974).
Reference: [3] Bae, H.-O., Choe, H. J., Kim, D. W.: Regularity and singularity of weak solutions to Ostwald-de Waele flows.J. Korean Math. Soc. 37 (2000), 957-975. Zbl 0977.76005, MR 1803282
Reference: [4] Berselli, L. C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear-dependent viscosities.J. Math. Fluid Mech. 12 (2010), 101-132. Zbl 1261.35118, MR 2602916, 10.1007/s00021-008-0277-y
Reference: [5] Böhme, G.: Non-Newtonian Fluid Mechanics.North-Holland Series in Applied Mathematics and Mechanics 31. North-Holland, Amsterdam (1987). Zbl 0713.76004, MR 0882542
Reference: [6] Bosia, S., Pata, V., Robinson, J. C.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations.J. Math. Fluid Mech. 16 (2014), 721-725. Zbl 1307.35186, MR 3267544, 10.1007/s00021-014-0182-5
Reference: [7] Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. Zbl 1253.76017, MR 2668872, 10.2422/2036-2145.2010.1.01
Reference: [8] Krylov, N. V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces.Graduate Studies in Mathematics 96. AMS, Providence (2008). Zbl 1147.35001, MR 2435520, 10.1090/gsm/096
Reference: [9] Ladyzhenskaya, O. A.: New equations for the description of the motion of viscous incompressible fluids and solvability in the large of boundary value problems for them.Tr. Mat. Inst. Steklova 102 (1967), 85-104 Russian. Zbl 0202.37802, MR 0226907
Reference: [10] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, New York (1969). Zbl 0184.52603, MR 0254401
Reference: [11] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques. Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [12] Loayza, M., Rojas-Medar, M. A.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the micropolar fluid equations.J. Math. Phys. 57 (2016), Article ID 021512, 6 pages. Zbl 1342.35223, MR 3462971, 10.1063/1.4942047
Reference: [13] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs.Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). Zbl 0851.35002, MR 1409366, 10.1007/978-1-4899-6824-1
Reference: [14] Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations.Evolutionary Equations. Volume II Handbook of Differential Equations. Elsevier, Amsterdam (2005), 371-459. Zbl 1095.35027, MR 2182831, 10.1016/S1874-5717(06)80008-3
Reference: [15] O'Neil, R.: Convolution operators and $L(p,q)$ spaces.Duke Math. J. 30 (1963), 129-142. Zbl 0178.47701, MR 0146673, 10.1215/S0012-7094-63-03015-1
Reference: [16] Pineau, B., Yu, X.: A new Prodi-Serrin type regularity criterion in velocity directions.J. Math. Fluid Mech. 20 (2018), 1737-1744. Zbl 1419.35153, MR 3877494, 10.1007/s00021-018-0388-z
Reference: [17] Pokorný, M.: Cauchy problem for the non-Newtonian viscous incompressible fluid.Appl. Math., Praha 41 (1996), 169-201. Zbl 0863.76003, MR 1382464, 10.21136/AM.1996.134320
Reference: [18] Triebel, H.: Theory of Function Spaces.Monographs in Mathematics 78. Birkhäuser, Basel (1983). Zbl 0546.46027, MR 0781540, 10.1007/978-3-0346-0416-1
Reference: [19] Yang, J.: Regularity criteria for 3D shear thinning fluids via two velocity components.Comput. Math. Appl. 77 (2019), 2854-2858. Zbl 1442.76011, MR 3945092, 10.1016/j.camwa.2019.01.017
.

Files

Files Size Format View
MathBohem_149-2024-3_1.pdf 213.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo