[1] Alsina, C., Schweizer, B., Frank, M. J.:
Associative Functions: Triangular Norms and Copulas. World Scientific, 2006.
MR 2222258
[2] Alsina, C., Trillas, E.:
On almost distributive Łukasiewicz triplets. Fuzzy Sets Syst. 50 (1992), 175-178.
DOI |
MR 1185392
[3] Běhounek, L., Bodenhofer, U., Cintula, P., Saminger-Platz, S., Sarkoci, P.:
Graded dominance and related graded properties of fuzzy conncectives. Fuzzy Sets Syst. 262 (2015), 78-101.
DOI |
MR 3294358
[4] Bentkowska, U., al., et:
Dominance of Binary Operations on Posets. Springer, Cham (2018).
DOI
[5] Bejines, C., Ardanza-Trevijano, S., Chasco, M. J., Elorza, J.:
Aggregation of indistinguishability operators. Fuzzy Sets Syst. 446 (2022), 53-67.
DOI |
MR 4473741
[6] Bo, Q., Li, G.:
The submodular inequality of aggregation operators. Symmetry 14 (2022), 2354.
DOI
[7] Beliakov, G., Bustince, H. S., Sanchez, T. C.:
A practical guide to averaging functions. Stud. Fuzziness Soft Comput. 329, Springer, Berlin, Heidelberg 2016.
DOI 10.1007/978-3-319-24753-3_2 |
MR 3382259
[8] Bustince, H., Montero, J., Mesiar, R.:
Migrativity of aggregation functions. Fuzzy Sets Syst. 160 (2009), 766-777.
DOI |
MR 2493274 |
Zbl 1186.68459
[9] Calvo, T.:
On some solutions of the distributivity equation. Fuzzy Sets Syst. 104 (1999), 85-96.
DOI |
MR 1685812
[10] Carbonell, M., Mas, M., Suñer, J., Torrens, J.:
On distributivity and modularity in De Morgan triplets. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 4 (1996), 351-368.
DOI 10.1142/S0218488596000202 |
MR 1414353
[11] Walle, B. V. De, Baets, B. De, Kerre, E.:
A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures. (I). General argumentation. Fuzzy Sets Syst. 97 (1998), 349-359.
DOI |
MR 1639465
[12] Walle, B. V. De, Baets, B. De, Kerre, E.:
A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures. (II). The identity case. Fuzzy Sets Syst. 99 (1998), 303-310.
DOI |
MR 1645693
[13] Díaz, S., Montes, S., Baets, B. De:
Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Syst. 15 (2007), 275-286.
DOI
[14] Drewniak, J., Rak, E.:
Subdistributivity and superdistributivity of binary operations. Fuzzy Sets Syst. 161 (2010), 189-201.
DOI |
MR 2566238
[15] Drewniak, J., Rak, E.:
Distributivity inequalities of monotonic operations. Fuzzy Sets Syst. 191 (2012), 62-71.
DOI |
MR 2874823
[17] Durante, F., Ricci, R. G.:
Supermigrativity of aggregation functions. Fuzzy Sets Syst. 335 (2018), 55-66.
DOI |
MR 3765540
[18] Fechner, W., Rak, E., Zedam, L.:
The modularity law in some classes of aggregation operators. Fuzzy Sets Syst. 332 (2018), 56-73.
DOI |
MR 3732249
[19] Fodor, J., Roubens, M.:
Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994.
Zbl 0827.90002
[20] Grabisch, M., Marichal, J., Mesiar, R., Pap, E.:
Aggregation Functions. Cambridge University Press, Cambridge 2009.
MR 2538324 |
Zbl 1206.68299
[21] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[22] Li, G., Zhang, L., Wang, J., Li, Z.:
Some results on the weak dominance between t-norms and t-conorms. Fuzzy Sets Syst. 467 (2023), 108487.
DOI |
MR 4598457
[23] Mesiar, R., Saminger, S.:
Domination of ordered weighted averaging operators over t-norms. Soft Computing 8 (2004), 562-570.
DOI
[24] Nagy, B., Basbous, R., Tajti, T.:
Lazy evaluations in Łukasiewicz type fuzzy logic. Fuzzy Sets Syst. 376 (2019), 127-151.
DOI |
MR 4011088
[25] Nguyen, H. T., Walker, C. L., Walker, E. A.:
A first Course in Fuzzy Logic. Taylor and Francis, CRC Press, 2019.
MR 3887670
[26] Saminger, S., Mesiar, R., Bodenhofer, U.:
Domination of aggregation operators and preservation of transitivity. Int. J. Uncert. Fuzziness Knowledge-Based Syst. 10 (2002), 11-35.
DOI |
MR 1962666 |
Zbl 1053.03514
[27] Saminger, S., Baets, B. De, Meyer, H. De:
On the dominance relation between ordinal sums of conjunctors. Kybernetika 42 (2006), 337-350.
MR 2253393
[28] Saminger, S.:
The dominance relation in some families of continuous Archimedean t-norms and copulas. Fuzzy Sets Syst. 160 (2009), 2017-2031.
DOI |
MR 2555018
[29] Sarkoci, P.:
Domination in the families of Frank and Hamacher t-norms. Kybernetika 41 (2005), 349-360.
MR 2181423
[30] Sarkoci, P.:
Dominance is not transitive on continuous triangular norms. Aequat. Math. 75 (2008), 201-207.
DOI |
MR 2424129
[31] Schweizer, B., Sklar, A.:
Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York 1983.
MR 0790314 |
Zbl 0546.60010
[32] Su, Y., Riera, J. V., Ruiz-Aguilera, D., Torrens, J.:
The modularity condition for uninorms revisted. Fuzzy Sets Syst. 357 (2019), 27-46.
DOI |
MR 3913057
[33] Tardiff, R. M.:
On a functional inequality arising in the construction of the product of several metric spaces. Aequat. Math. 20 (1980), 51-58.
DOI |
MR 0569950
[34] Yager, R. R.:
On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Systems Man Cybernet. 18 (1988), 183-190.
DOI |
MR 0931863
[35] Yang, X. P.:
Resolution of bipolar fuzzy relation equations with max-Łukasiewicz composition. Fuzzy Sets Syst. 397 (2020), 41-60.
DOI |
MR 4135509