[1] Almudevar, A.:
A dynamic programming algorithm for the optimal control of piecde-wise deterministic Markov processes. SIAM J. Control Optim. 40 (2001), 525-539.
DOI |
MR 1857362
[2] Bertsekas, D., Shreve, S.:
Stochastic Optimal Control: The Discrete-Time Case. Academic Press Inc, New York 1978.
MR 0511544
[3] Costa, O. L. V., Dufour, F.:
The vanishing discount approach for the average continuous of piecewise deterministic Markov processes. J. Appl. Probab. 46 (2009), 1157-1183.
DOI |
MR 2582713
[4] Costa, O. L. V., Dufour, F.:
Continuous Average Control of Piecewise Deterministic Markov Processes. Springer-Vrelag, New York 2013.
MR 3059228
[5] Bauerle, N., Rieder, U.:
Markov Decision Processes with Applications to Finance. Springer, Heidelberg 2011.
MR 2808878
[6] Bertsekas, D., Shreve, S.:
Stochastic Optimal Control: The Discrete-Time Case. Academic Press Inc, New York 1978.
MR 0511544
[7] Boda, K., Filar, J. A., Lin, Y. L.:
Stochastic target hitting time and the problem of early retirement. IEEE Trans. Automat. Control.49 (2004), 409-419.
DOI |
MR 2062253
[8] Davis, M. H. A.:
Piecewise deterministic Markov processes: a general class of nondiffusion stochastic models. J. Roy. Statist. Soc. 46 (1984), 353-388.
DOI |
MR 0790622
[9] Davis, M. H. A.:
Markov Models and Optimization. Chapman and Hall 1993.
DOI |
MR 1283589
[10] Dufou, F., Horiguchi, M., Piunovskiy, A.:
Optimal impulsive control of piecewise deterministic Markov processes. Stochastics 88 (2016), 1073-1098.
DOI |
MR 3529861
[11] Guo, X. P., Hernández-Lerma, O.:
Continuous-Time Markov Decision Process: Theorey and Applications. Springer-Verlag, Berlin 2009.
MR 2554588
[12] Guo, X. P., Piunovskiy, A.:
Discounted continuous-time Markov decision processes with constraints: unbounded transition and loss rates. Math. Oper. Res. 36 (2011), 105-132.
DOI |
MR 2799395
[13] Guo, X. P., Song, X. Y., Zhang, Y.:
First passage optimality for continuous time Markov decision processes with varying discount factors and history-dependent policies. IEEE Trans. Automat. Control 59 (2014), 163-174.
DOI |
MR 3163332
[14] Hernández-Lerma, O., Lasserre, J. B.:
Discrete-Time Markov Control Process: Basic Optimality Criteria. Springer-Verlag, New York 1996.
MR 1363487
[15] Hespanha, J. P.:
A model for stochastic hybrid systems with applications to communication networks. Nonlinear Anal. 62 (2005), 1353-1383.
DOI |
MR 2164929
[16] Huang, Y. H., Guo, X. P.:
Finite-horizon piecewise deterministic Markov decision processes with unbounded transition rates. Stochastics 91 (2019), 67-95.
DOI |
MR 3878427
[17] Huang, Y. H., Guo, X. P., Li, Z. F.:
Minimum risk probability for finite horizon semi-Markov decision process. J. Math. Anal. Appl. 402 (2013), 378-391.
DOI |
MR 3023265
[18] Huang, X. X., Zou, X. L., Guo, X. P.:
A minimization problem of the risk probability in first passage semi-Markov decision processes with loss rates. Sci. China Math. 58 (2015), 1923-1938.
DOI |
MR 3383991
[19] Huo, H. F., Wen, X.:
First passage risk probability optimality for continuous time Markov decision processes. Kybernetika 55 (2019), 114-133.
DOI |
MR 3935417
[20] Huo, H. F., Zou, X. L., Guo, X. P.:
The risk probability criterion for discounted continuous-time Markov decision processes. Discrete Event Dynamic system: Theory Appl. 27 (2017), 675-699.
DOI |
MR 3712415
[21] Janssen, J., Manca, R.:
Semi-Markov Risk Models For Finance, Insurance, and Reliability. Springer-Verlag, New York 2006.
MR 2301626
[22] Lin, Y. L., Tomkins, R. J., Wang, C. L.:
Optimal models for the first arrival time distribution function in continuous time with a special case. Acta. Math. Appl. Sinica 10 (1994) 194-212.
DOI |
MR 1289720
[23] Ohtsubo, Y., Toyonaga, K.:
Optimal policy for minimizing risk models in Markov decision processes. J. Math. Anal. Appl. 271 (2002), 66-81.
DOI |
MR 1923747
[24] Piunovskiy, A., Zhang, Y.:
Continuous-Time Markov Decision Processes: Borel Space Models and General Control Strategies. Springer, 2020.
MR 4180990
[25] Wen, X., Huo, H. F., Guo, X. P.:
First passage risk probability minimization for piecewise deterministic Markov decision processes. Acta Math. Appl. Sinica 38 (2022), 549-567.
DOI |
MR 4447198
[26] Wu, C. B., Lin, Y. L.:
Minimizing risk models in Markov decision processes with policies depending on target values. J. Math. Anal. Appl. 231 (1999), 47-57.
DOI |
MR 1676741
[27] Wu, X., Guo, X. P.:
First passage optimality and variance minimization of Markov decision processes with varying discount factors. J. Appl. Prob. 52 (2015), 441-456.
DOI |
MR 3372085