Previous |  Up |  Next

Article

Title: On stochastic properties of past varentropy with applications (English)
Author: Sharma, Akash
Author: Kundu, Chanchal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 3
Year: 2024
Pages: 373-394
Summary lang: English
.
Category: math
.
Summary: To have accuracy in the extracted information is the goal of the reliability theory investigation. In information theory, varentropy has recently been proposed to describe and measure the degree of information dispersion around entropy. Theoretical investigation on varentropy of past life has been initiated, however details on its stochastic properties are yet to be discovered. In this paper, we propose a novel stochastic order and introduce new classes of life distributions based on past varentropy. Further, we illustrate some of its applications in reliability modeling and in the diversity measure of Boltzmann distribution. (English)
Keyword: ageing classes
Keyword: past varentropy order
Keyword: stochastic orders
Keyword: varentropy
MSC: 60E15
MSC: 62B10
MSC: 94A17
DOI: 10.21136/AM.2024.0163-23
.
Date available: 2024-05-17T07:48:28Z
Last updated: 2024-05-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152355
.
Reference: [1] kan, E. Arı: Varentropy decreases under polar transform.IEEE Trans. Inf. Theory 62 (2016), 3390-3400. Zbl 1359.94292, MR 3506740, 10.1109/TIT.2016.2555841
Reference: [2] Barlow, R. E., Proschan, F.: Statistical Theory of Reliability and Life Testing.Holt, Rinehart and Winston, New York (1975). Zbl 0379.62080, MR 0438625
Reference: [3] Bobkov, S., Madiman, M.: Concentration of the information in data with log-concave distributions.Ann. Probab. 39 (2011), 1528-1543. Zbl 1227.60043, MR 2857249, 10.1214/10-AOP592
Reference: [4] Buono, F., Longobardi, M., Pellerey, F.: Varentropy of past lifetimes.Math. Methods Stat. 31 (2022), 57-73. Zbl 07595983, MR 4491117, 10.3103/S106653072202003X
Reference: [5] Burnham, K. P., Anderson, D. R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.Springer, New York (2002). Zbl 1005.62007, MR 1919620, 10.1007/b97636
Reference: [6] Cover, T. M., Thomas, J. A.: Elements of Information Theory.Wiley Series in Telecommunications. John Wiley & Sons, New York (1991). Zbl 0762.94001, MR 1122806, 10.1002/0471200611
Reference: [7] Crescenzo, A. Di, Longobardi, M.: Entropy-based measure of uncertainty in past lifetime distributions.J. Appl. Probab. 39 (2002), 434-440. Zbl 1003.62087, MR 1908960, 10.1239/jap/1025131441
Reference: [8] Crescenzo, A. Di, Paolillo, L.: Analysis and applications of the residual varentropy of random lifetimes.Probab. Eng. Inf. Sci. 35 (2021), 680-698. Zbl 07620594, MR 4276539, 10.1017/S0269964820000133
Reference: [9] Crescenzo, A. Di, Paolillo, L., Suárez-Llorens, A.: Stochastic comparisons, differential entropy and varentropy for distributions induced by probability density functions.Available at https://arxiv.org/abs/2103.11038 (2021), 21 pages. 10.48550/arXiv.2103.11038
Reference: [10] Ebrahimi, N., Kirmani, S. N. U. A.: Some results on ordering of survival functions through uncertainty.Stat. Probab. Lett. 29 (1996), 167-176. Zbl 1007.62527, MR 1411415, 10.1016/0167-7152(95)00170-0
Reference: [11] Fradelizi, M., Madiman, M., Wang, L.: Optimal concentration of information content for log-concave densities.High Dimensional Probability VII Progress in Probability 71. Birkhäuser, Basel (2016), 45-60. Zbl 1358.60036, MR 3565259, 10.1007/978-3-319-40519-3_3
Reference: [12] Kundu, C., Singh, S.: On generalized interval entropy.Commun. Stat., Theory Methods 49 (2020), 1989-2007. Zbl 1511.62012, MR 4070896, 10.1080/03610926.2019.1568480
Reference: [13] Liu, J.: Information Theoretic Content and Probability: Ph.D. Thesis.University of Florida, Gainesville (2007). MR 2710407
Reference: [14] Maadani, S., Borzadaran, G. R. Mohtashami, Roknabadi, A. H. Rezaei: Varentropy of order statistics and some stochastic comparisons.Commun. Stat., Theory Methods 51 (2022), 6447-6460. Zbl 07571136, MR 4464492, 10.1080/03610926.2020.1861299
Reference: [15] Nanda, A. K., Paul, P.: Some properties of past entropy and their applications.Metrika 64 (2006), 47-61. Zbl 1104.94007, MR 2242557, 10.1007/s00184-006-0030-6
Reference: [16] Nanda, A. K., Paul, P.: Some results on generalized past entropy.J. Stat. Plann. Inference 136 (2006), 3659-3674. Zbl 1098.94014, MR 2284670, 10.1016/j.jspi.2005.01.006
Reference: [17] Rajaram, R., Castellani, B., Wilson, A. N.: Advancing Shannon entropy for measuring diversity in systems.Complexity 2017 (2017), Article ID 8715605, 10 pages. Zbl 1407.94059, 10.1155/2017/8715605
Reference: [18] Raqab, M. Z., Bayoud, H. A., Qiu, G.: Varentropy of inactivity time of a random variable and its related applications.IMA J. Math. Control Inf. 39 (2022), 132-154. Zbl 1492.94041, MR 4388735, 10.1093/imamci/dnab033
Reference: [19] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics. Springer, New York (2007). Zbl 1111.62016, MR 2265633, 10.1007/978-0-387-34675-5
Reference: [20] Shanker, R., Fesshaye, H., Selvaraj, S.: On modeling of lifetimes data using exponential and lindley distributions.Biometrics Biostat. Int. J. 2 (2015), 140-147. 10.15406/bbij.2015.02.00042
Reference: [21] Shannon, C. E.: A mathematical theory of communication.Bell Syst. Tech. J. 27 (1948), 379-423. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [22] Shannon, C. E.: A mathematical theory of communication.Bell Syst. Tech. J. 27 (1948), 623-656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb00917.x
Reference: [23] Sharma, A., Kundu, C.: Varentropy of doubly truncated random variable.Probab. Eng. Inf. Sci. 37 (2023), 852-871. MR 4604154, 10.1017/S0269964822000225
Reference: [24] Song, K.-S.: Rényi information, loglikelihood and an intrinsic distribution measure.J. Stat. Plann. Inference 93 (2001), 51-69. Zbl 0997.62003, MR 1822388, 10.1016/S0378-3758(00)00169-5
Reference: [25] Zacks, S.: Introduction to Reliability Analysis: Probability Models and Statistical Methods.Springer Texts in Statistics. Springer, New York (1992). Zbl 0743.62096, MR 1138468, 10.1007/978-1-4612-2854-7
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo