Title: | The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula (English) |
Author: | Liu, Chein-Shan |
Author: | Li, Botong |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 69 |
Issue: | 3 |
Year: | 2024 |
Pages: | 355-372 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | The Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an $n$-dimensional matrix eigenvalue problem is derived with a special matrix ${\bf A}:=[a_{ij}]$, that is, $a_{ij}=0$ if $i+\nobreak j$ is odd.\looseness +1 \endgraf Based on the product formula, an integration method with a fictitious time, namely the fictitious time integration method (FTIM), is developed to obtain the higher-index eigenvalues. Also, we recover the symmetric potential function $q(x)$ in the Sturm-Liouville operator by specifying a few lower-index eigenvalues, based on the product formula and the Newton iterative method. (English) |
Keyword: | symmetric Sturm-Liouville problem |
Keyword: | inverse potential problem |
Keyword: | special matrix eigenvalue problem |
Keyword: | product formula |
Keyword: | fictitious time integration method |
MSC: | 34A55 |
MSC: | 34B24 |
DOI: | 10.21136/AM.2024.0005-21 |
. | |
Date available: | 2024-05-17T07:47:48Z |
Last updated: | 2024-05-20 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152354 |
. | |
Reference: | [1] Andrew, A. L.: Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions.J. Comput. Appl. Math. 125 (2000), 359-366. Zbl 0970.65086, MR 1803202, 10.1016/S0377-0427(00)00479-9 |
Reference: | [2] Borg, G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe.Acta Math. 78 (1946), 1-96 German. Zbl 0063.00523, MR 0015185, 10.1007/BF02421600 |
Reference: | [3] Çelik, I.: Approximate calculation of eigenvalues with the method of weighted residuals-collocation method.Appl. Math. Comput. 160 (2005), 401-410. Zbl 1064.65073, MR 2102818, 10.1016/j.amc.2003.11.011 |
Reference: | [4] Çelik, I.: Approximate computation of eigenvalues with Chebyshev collocation method.Appl. Math. Comput. 168 (2005), 125-134. Zbl 1082.65555, MR 2170019, 10.1016/j.amc.2004.08.024 |
Reference: | [5] Dehghan, M.: An efficient method to approximate eigenfunctions and high-index eigenvalues of regular Sturm-Liouville problems.Appl. Math. Comput. 279 (2016), 249-257. Zbl 1410.65276, MR 3458019, 10.1016/j.amc.2016.01.026 |
Reference: | [6] Ghelardoni, P.: Approximations of Sturm-Liouville eigenvalues using boundary value methods.Appl. Numer. Math. 23 (1997), 311-325. Zbl 0877.65056, MR 1445127, 10.1016/S0168-9274(96)00073-6 |
Reference: | [7] Ghelardoni, P., Magherini, C.: BVMs for computing Sturm-Liouville symmetric potentials.Appl. Math. Comput. 217 (2010), 3032-3045. Zbl 1204.65092, MR 2733748, 10.1016/j.amc.2010.08.036 |
Reference: | [8] Gould, S. H.: Variational Methods for Eigenvalue Problems: An Introduction to the Methods of Rayleigh, Ritz, Weinstein, and Aronszajn.Dover, New York (1995). Zbl 0077.09603, MR 1350533, 10.3138/9781487596002 |
Reference: | [9] Hald, O. H.: The inverse Sturm-Liouville problem and the Rayleigh-Ritz method.Math. Comput. 32 (1978), 687-705. Zbl 0432.65050, MR 0501963, 10.1090/S0025-5718-1978-0501963-2 |
Reference: | [10] Hald, O. H.: The inverse Sturm-Liouville problem with symmetric potentials.Acta Math. 141 (1978), 263-291. Zbl 0431.34013, MR 0505878, 10.1007/BF02545749 |
Reference: | [11] Hinton, D., (Eds.), P. W. Schaefer: Spectral Theory & Computational Methods of Sturm-Liouville Problems.Lecture Notes in Pure and Applied Mathematics 191. Marcel Dekker, New York (1997). Zbl 0866.00046, MR 1460546 |
Reference: | [12] Kobayashi, M.: Eigenvalues of discontinuous Sturm-Liouville problems with symmetric potentials.Comput. Math. Appl. 18 (1989), 357-364. Zbl 0682.65054, MR 0999264, 10.1016/0898-1221(89)90220-4 |
Reference: | [13] Liu, C.-S.: A Lie-group shooting method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems.CMES, Comput. Model. Eng. Sci. 26 (2008), 157-168. Zbl 1232.65110, MR 2426635, 10.3970/cmes.2008.026.157 |
Reference: | [14] Liu, C.-S.: Analytic solutions of the eigenvalues of Mathieu's equation.J. Math. Research 12 (2020), Article ID p1, 11 pages. 10.5539/jmr.v12n1p1 |
Reference: | [15] Liu, C.-S.: Accurate eigenvalues for the Sturm-Liouville problems, involving generalized and periodic ones.J. Math. Res. 14 (2022), Article ID p1, 19 pages. 10.5539/jmr.v14n4p1 |
Reference: | [16] Liu, C.-S., Atluri, S. N.: A novel fictitious time integration method for solving the discretized inverse Sturm-Liouville problems, for specified eigenvalues.CMES, Comput. Model. Eng. Sci. 36 (2008), 261-285. Zbl 1232.74007, MR 2489473, 10.3970/cmes.2008.036.261 |
Reference: | [17] Liu, C.-S., Atluri, S. N.: A novel time integration method for solving a large system of non-linear algebraic equations.CMES, Comput. Model. Eng. Sci. 31 (2008), 71-83. Zbl 1152.65428, MR 2450570 |
Reference: | [18] Liu, C.-S., Chang, J.-R., Shen, J.-H., Chen, Y.-W.: A boundary shape function method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems.Mathematics 10 (2022), Article ID 3689, 22 pages. 10.3390/math10193689 |
Reference: | [19] Liu, C.-S., Li, B.: An upper bound theory to approximate the natural frequencies and parameters identification of composite beams.Composite Struct. 171 (2017), 131-144. 10.1016/j.compstruct.2017.03.014 |
Reference: | [20] Liu, C.-S., Li, B.: Reconstructing a second-order Sturm-Liouville operator by an energetic boundary function iterative method.Appl. Math. Lett. 73 (2017), 49-55. Zbl 1375.65100, MR 3659907, 10.1016/j.aml.2017.04.023 |
Reference: | [21] Liu, C.-S., Li, B.-T.: An $R(x)$-orthonormal theory for the vibration performance of non-smooth symmetric composite beam with complex interface.Acta Mech. Sin. 35 (2019), 228-241. MR 3908891, 10.1007/s10409-018-0799-3 |
Reference: | [22] Brunt, B. van: The Calculus of Variations.Universitext. Springer, New York (2004). Zbl 1039.49001, MR 2004181, 10.1007/b97436 |
Reference: | [23] Berghe, G. Vanden, Daele, M. Van: Exponentially-fitted Numerov methods.J. Comput. Appl. Math. 200 (2007), 140-153. Zbl 1110.65071, MR 2276821, 10.1016/j.cam.2005.12.022 |
. |
Fulltext not available (moving wall 24 months)