Previous |  Up |  Next

Article

Title: Parametric representations of BiHom-Hopf algebras (English)
Author: Zhang, Xiaohui
Author: Wang, Wei
Author: Chen, Juzhen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 45-86
Summary lang: English
.
Category: math
.
Summary: The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new $n$-monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras. (English)
Keyword: BiHom-Hopf algebra
Keyword: BiHom-Yang-Baxter equation
Keyword: $n$-monoidal category
Keyword: Drinfeld double
MSC: 16T25
MSC: 16T99
MSC: 16W10
idZBL: Zbl 07893367
idMR: MR4717822
DOI: 10.21136/CMJ.2023.0213-22
.
Date available: 2024-03-13T10:03:34Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152268
.
Reference: [1] Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras.CRM Monograph Series 29. AMS, Providence (2010). Zbl 1209.18002, MR 2724388, 10.1090/crmm/029
Reference: [2] Balteanu, C., Fiedorowicz, Z., Schwänzl, R., Vogt, R.: Iterated monoidal categories.Adv. Math. 176 (2003), 277-349. Zbl 1030.18006, MR 1982884, 10.1016/S0001-8708(03)00065-3
Reference: [3] Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras.Commun. Algebra 39 (2011), 2216-2240. Zbl 1255.16032, MR 2813174, 10.1080/00927872.2010.490800
Reference: [4] Caenepeel, S., Wang, D., Yin, Y.: Yetter-Drinfeld modules over weak bialgebras.Ann. Univ. Ferrara, Nuova Ser., Sez. VII 51 (2005), 69-98. Zbl 1132.16031, MR 2294760, 10.1007/BF02824824
Reference: [5] Chen, Y., Zhang, L.: The category of Yetter-Drinfel'd Hom-modules and the quantum Hom-Yang-Baxter equation.J. Math. Phys. 55 (2014), Article ID 031702, 18 pages. Zbl 1292.16022, MR 3221244, 10.1063/1.4868964
Reference: [6] Fang, X.-L., Liu, W.: Solutions of the BiHom-Yang-Baxter equations.Sb. Math. 209 (2018), 901-918 translation from Mat. Sb. 209 2018 128-145. Zbl 1442.16035, MR 3807910, 10.1070/SM8863
Reference: [7] Forcey, S., Siehler, J., Sowers, E. S.: Operads in iterated monoidal categories.J. Homotopy Relat. Struct. 2 (2007), 1-43. Zbl 1135.18004, MR 2326931
Reference: [8] Graziani, G., Makhlouf, A., Menini, C., Panaite, F.: BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras.SIGMA, Symmetry Integrability Geom. Methods Appl. 11 (2015), Article ID 086, 34 pages. Zbl 1358.17006, MR 3415909, 10.3842/SIGMA.2015.086
Reference: [9] Guo, S., Zhang, X., Wang, S.: Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras.Colloq. Math. 143 (2016), 79-103. Zbl 1367.16032, MR 3459536, 10.4064/cm6509-12-2015
Reference: [10] Guo, S., Zhang, X., Wang, S.: The construction and deformation of BiHom-Novikov algebras.J. Geom. Phys. 132 (2018), 460-472. Zbl 1442.17023, MR 3836793, 10.1016/j.geomphys.2018.06.011
Reference: [11] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations.J. Algebra 295 (2006), 314-361. Zbl 1138.17012, MR 2194957, 10.1016/j.jalgebra.2005.07.036
Reference: [12] Hu, N.: $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations.Algebra Colloq. 6 (1999), 51-70. Zbl 0943.17007, MR 1680657
Reference: [13] Joyal, A., Street, S.: Tortile Yang-Baxter operators in tensor categories.J. Pure Appl. Algebra 71 (1991), 43-51. Zbl 0726.18004, MR 1107651, 10.1016/0022-4049(91)90039-5
Reference: [14] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155. Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [15] Li, J., Chen, L., Sun, B.: Bihom-Nijienhuis operators and T*-extensions of Bihom-Lie superalgebras.Hacet. J. Math. Stat. 48 (2019), 785-799. Zbl 1488.17026, MR 3974585, 10.15672/hjms.2018.549
Reference: [16] Liu, L., Makhlouf, A., Menini, C., Panaite, F.: $\{\sigma,\tau\}$-Rota-Baxter operators, infinitesimal Hom-bialgebras and the associative (bi)Hom-Yang-Baxter equation.Can. Math. Bull. 62 (2019), 355-372. Zbl 1460.17027, MR 3952524, 10.4153/CMB-2018-028-8
Reference: [17] Lu, D., Zhang, X.: Hom-L-R-smash biproduct and the category of Hom-Yetter-Drinfel'd- Long bimodules.J. Algebra Appl. 17 (2018), Article ID 1850133, 19 pages. Zbl 1430.16030, MR 3813706, 10.1142/S0219498818501335
Reference: [18] Majid, S.: Representations, duals and quantum doubles of monoidal categories.Rend. Circ. Mat. Palermo, II. Ser., Suppl. 26 (1991), 197-206. Zbl 0762.18005, MR 1151906
Reference: [19] Majid, S.: Quantum double for quasi-Hopf algebras.Lett. Math. Phys. 45 (1998), 1-9. Zbl 0940.16018, MR 1631648, 10.1023/A:1007450123281
Reference: [20] Makhlouf, A., Panaite, F.: Yetter-Drinfeld modules for Hom-bialgebras.J. Math. Phys. 55 (2014), Article ID 013501, 17 pages. Zbl 1292.16025, MR 3390433, 10.1063/1.4858875
Reference: [21] Makhlouf, A., Panaite, F.: Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra.J. Algebra 441 (2015), 314-343. Zbl 1332.16024, MR 3391930, 10.1016/j.jalgebra.2015.05.032
Reference: [22] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures.J. Gen. Lie Theory Appl. 2 (2008), 51-64. Zbl 1184.17002, MR 2399415, 10.4303/jglta/S070206
Reference: [23] Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras.Generalized Lie Theory in Mathematics, Physics and Beyond Springer, Berlin (2009), 189-206. Zbl 1173.16019, MR 2509148, 10.1007/978-3-540-85332-9_17
Reference: [24] Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras.J. Algebra Appl. 9 (2010), 553-589. Zbl 1259.16041, MR 2718646, 10.1142/S0219498810004117
Reference: [25] Montgomery, S.: Hopf algebras and their actions on rings.Regional Conference Series in Mathematics 82. AMS, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082
Reference: [26] Nenciu, A.: The center construction for weak Hopf algebras.Tsukaba J. Math. 26 (2002), 189-204. Zbl 1029.16023, MR 1915985, 10.21099/tkbjm/1496164389
Reference: [27] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras.J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. Zbl 1179.17001, MR 2539278, 10.1088/1751-8113/42/16/165202
Reference: [28] Yau, D.: Hom-quantum groups. I. Quasi-triangular Hom-bialgebras.J. Phys. A, Math. Theor. 45 (2012), Article ID 065203, 23 pages. Zbl 1241.81110, MR 2881054, 10.1088/1751-8113/45/6/065203
Reference: [29] Zhang, X., Dong, L.: Braided mixed datums and their applications on Hom-quantum groups.Glasg. Math. J. 60 (2018), 231-251. Zbl 1443.18010, MR 3733844, 10.1017/S0017089517000088
Reference: [30] Zhang, X., Guo, S., Wang, S.: Drinfeld codoubles of Hom-Hopf algebras.Adv. Appl. Clifford Algebr. 29 (2019), Article ID 36, 26 pages. Zbl 1454.17010, MR 3923497, 10.1007/s00006-019-0949-0
Reference: [31] Zhang, X., Wang, D.: Cotwists of bicomonads and BiHom-bialgebras.Algebr. Represent. Theor. 23 (2020), 1355-1385. Zbl 1455.18004, MR 4125582, 10.1007/s10468-019-09888-2
Reference: [32] Zhang, X., Wang, W., Zhao, X.: Drinfeld twists for monoidal Hom-bialgebras.Colloq. Math. 156 (2019), 199-228. Zbl 1446.16039, MR 3925088, 10.4064/cm7359-4-2018
Reference: [33] Zhao, X., Zhang, X.: Lazy 2-cocycles over monoidal Hom-Hopf algebras.Colloq. Math. 142 (2016), 61-81. Zbl 1375.16016, MR 3417744, 10.4064/cm142-1-3
Reference: [34] Zhu, H., Liu, G., Yang, T.: Characterization of quasi-Yetter-Drinfeld modules.J. Algebra Appl. 19 (2020), Article ID 2050058, 16 pages. Zbl 1444.16047, MR 4082442, 10.1142/S0219498820500589
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo