Previous |  Up |  Next

Article

Title: Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid (English)
Author: Dong, Jianwei
Author: Zhu, Junhui
Author: Zhang, Litao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 29-43
Summary lang: English
.
Category: math
.
Summary: We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on $[0,1]$. To prove these results, some new average quantities are introduced. (English)
Keyword: micoropolar fluid
Keyword: global classical solution
Keyword: non-existence
MSC: 35B44
MSC: 35Q35
idZBL: Zbl 07893366
idMR: MR4717821
DOI: 10.21136/CMJ.2023.0196-22
.
Date available: 2024-03-13T10:02:59Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152267
.
Reference: [1] Bašić-Šiško, A., Dražić, I.: Global solution to a one-dimensional model of viscous and heat-conducting micropolar real gas flow.J. Math. Anal. Appl. 495 (2021), Article ID 124690, 26 pages. Zbl 1462.35281, MR 4172845, 10.1016/j.jmaa.2020.124690
Reference: [2] Bašić-Šiško, A., Dražić, I.: Uniqueness of generalized solution to micropolar viscous real gas flow with homogeneous boundary conditions.Math. Methods Appl. Sci. 44 (2021), 4330-4341. Zbl 1473.76044, MR 4235508, 10.1002/mma.7032
Reference: [3] Bašić-Šiško, A., Dražić, I.: Local existence for viscous reactive micropolar real gas flow and thermal explosion with homogeneous boundary conditions.J. Math. Anal. Appl. 509 (2022), Article ID 125988, 31 pages. Zbl 1509.35207, MR 4362867, 10.1016/j.jmaa.2022.125988
Reference: [4] Bašić-Šiško, A., Dražić, I., Simčić, L.: One-dimensional model and numerical solution to the viscous and heat-conducting micropolar real gas flow with homogeneous boundary conditions.Math. Comput. Simul. 195 (2022), 71-87. Zbl 07487705, MR 4372809, 10.1016/j.matcom.2021.12.024
Reference: [5] Chang, S., Duan, R.: The limits of coefficients of angular viscosity and microrotation viscosity to one-dimensional compressible Navier-Stokes equations for micropolar fluids model.J. Math. Anal. Appl. 516 (2022), Article ID 126462, 41 pages. Zbl 1504.35219, MR 4450883, 10.1016/j.jmaa.2022.126462
Reference: [6] Cui, H., Yin, H.: Stationary solutions to the one-dimensional micropolar fluid model in a half line: Existence, stability and convergence rate.J. Math. Anal. Appl. 449 (2017), 464-489. Zbl 1360.35172, MR 3595213, 10.1016/j.jmaa.2016.11.065
Reference: [7] Dong, J., Ju, Q.: Blow-up of smooth solutions to compressible quantum Navier-Stokes equations.Sci. Sin., Math. 50 (2020), 873-884 Chinese. Zbl 1499.35117, 10.1360/N012018-00134
Reference: [8] Dong, J., Xue, H., Lou, G.: Singularities of solutions to compressible Euler equations with damping.Eur. J. Mech., B, Fluids 76 (2019), 272-275. Zbl 1469.35171, MR 3926951, 10.1016/j.euromechflu.2019.03.005
Reference: [9] Dong, J., Zhu, J., Wang, Y.: Blow-up for the compressible isentropic Navier-Stokes- Poisson equations.Czech. Math. J. 70 (2020), 9-19. Zbl 1513.35449, MR 4078344, 10.21136/CMJ.2019.0156-18
Reference: [10] Dong, J., Zhu, J., Xue, H.: Blow-up of smooth solutions to the Cauchy problem for the viscous two-phase model.Math. Phys. Anal. Geom. 21 (2018), Article ID 20, 8 pages. Zbl 1394.76136, MR 3835282, 10.1007/s11040-018-9279-z
Reference: [11] Duan, R.: Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity.J. Math. Anal. Appl. 463 (2018), 477-495. Zbl 1390.35267, MR 3785466, 10.1016/j.jmaa.2018.03.009
Reference: [12] Duan, R.: Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity.Nonlinear Anal., Real World Appl. 42 (2018), 71-92. Zbl 1516.35330, MR 3773352, 10.1016/j.nonrwa.2017.12.006
Reference: [13] Eringen, A. C.: Theory of micropolar fluids.J. Math. Mech. 16 (1966), 1-18. MR 0204005, 10.1512/iumj.1967.16.16001
Reference: [14] Feng, Z., Zhu, C.: Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum.Discrete Contin. Dyn. Syst. 39 (2019), 3069-3097. Zbl 1420.35235, MR 3959421, 10.3934/dcds.2019127
Reference: [15] Gao, J., Cui, H.: Large-time behavior of solutions to the inflow problem of the non-isentropic micropolar fluid model.Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 1169-1195. Zbl 1513.35452, MR 4266912, 10.1007/s10473-021-0410-z
Reference: [16] Huang, L., Yang, X.-G., Lu, Y., Wang, T.: Global attractors for a nonlinear one-dimensional compressible viscous micropolar fluid model.Z. Angew. Math. Phys. 70 (2019), Article ID 40, 20 pages. Zbl 1412.35220, MR 3908857, 10.1007/s00033-019-1083-5
Reference: [17] Jiu, Q., Wang, Y., Xin, Z.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities.J. Differ. Equations 259 (2015), 2981-3003. Zbl 1319.35194, MR 3360663, 10.1016/j.jde.2015.04.007
Reference: [18] {Ł}ukaszewicz, G.: Micropolar Fluids: Theory and Applications.Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999). Zbl 0923.76003, MR 1711268, 10.1007/978-1-4612-0641-5
Reference: [19] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem.Glas. Mat., III. Ser. 33 (1998), 71-91. Zbl 0912.35135, MR 1652788
Reference: [20] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem.Glas. Mat., III. Ser. 33 (1998), 199-208. Zbl 0917.76004, MR 1695531
Reference: [21] Mujaković, N.: Global in time estimates for one-dimensional compressible viscous micropolar fluid model.Glas. Mat., III. Ser. 40 (2005), 103-120. Zbl 1082.35128, MR 2195864, 10.3336/gm.40.1.10
Reference: [22] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem.Math. Commun. 10 (2005), 1-14. Zbl 1076.35103, MR 2239387
Reference: [23] Mujaković, N.: Uniqueness of a solution of the Cauchy problem for one-dimensional compressible viscous micropolar fluid model.Appl. Math. E-Notes 6 (2006), 113-118. Zbl 1154.76045, MR 2219158
Reference: [24] Mujaković, N.: Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 53 (2007), 361-379. Zbl 1180.35007, MR 2358235, 10.1007/s11565-007-0023-z
Reference: [25] Mujaković, N.: Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem.Math. Inequal. Appl. 12 (2009), 651-662. Zbl 1178.35007, MR 2540984, 10.7153/mia-12-49
Reference: [26] Mujaković, N.: 1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditons for temperature: A local existence theorem.Nonlinear Anal., Real World Appl. 13 (2012), 1844-1853. Zbl 1254.76122, MR 2891014, 10.1016/j.nonrwa.2011.12.012
Reference: [27] Mujaković, N.: The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature.Nonlinear Anal., Real World Appl. 19 (2014), 19-30. Zbl 1300.35100, MR 3206655, 10.1016/j.nonrwa.2014.02.006
Reference: [28] Mujaković, N., Črnjarić-Žic, N.: Convergent finite difference scheme for 1D flow of compressible micropolar fluid.Int. J. Numer. Anal. Model. 12 (2015), 94-124. Zbl 1329.35251, MR 3286458
Reference: [29] Qin, Y., Wang, T., Hu, G.: The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity.Nonlinear Anal., Real World Appl. 13 (2012), 1010-1029. Zbl 1239.35127, MR 2863933, 10.1016/j.nonrwa.2010.10.023
Reference: [30] Sideris, T. C.: Formation of singularities in three-dimensional compressible fluids.Commun. Math. Phys. 101 (1985), 475-485. Zbl 0606.76088, MR 0815196, 10.1007/BF01210741
Reference: [31] Wang, G., Guo, B., Fang, S.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations.Math. Methods Appl. Sci. 40 (2017), 5262-5272. Zbl 1383.35034, MR 3689262, 10.1002/mma.4384
Reference: [32] Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density.Commun. Pure Appl. Math. 51 (1998), 229-240. Zbl 0937.35134, MR 1488513, 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
Reference: [33] Xin, Z., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations.Commun. Math. Phys. 321 (2013), 529-541. Zbl 1287.35059, MR 3063918, 10.1007/s00220-012-1610-0
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo