[1] Arapostathis, A., Borkar, V. S., Fernández-Gaucherand, E., Gosh, M. K., Marcus, S. I.:
Discrete-time controlled Markov processes with average cost criterion: a survey. SIAM J. Control Optim. 32 (1993), 2, 282-344.
DOI |
MR 1205981
[2] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Discounted Markov decision processes with fuzzy rewards induced by non-fuzzy systems. In: Proc. 10th International Conference on Operations Research and Enterprise Systems ICORES 2021, pp. 49-59.
[3] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.:
Markov decision proceses on finite spaces with fuzzy total reward. Kybernetika 58 (2022), 2, 180-199.
DOI |
MR 4467492
[4] Chen, S. J., Chen, S. M.:
Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. Appl. Intell. 26 (2007), 1, 1-11.
DOI
[5] Chung, Y. L., Tsai, Z. N.: A quantized water-filling packet scheduling scheme for downlink transmissions in LTE-advanced systems with carrier aggregation. In: SoftCOM 2010, 18th International Conference on Software, Telecommunications and Computer Networks IEEE (2010), pp. 275-279.
[6] Diamond, P., Kloeden, P.:
Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore 1994.
MR 1337027
[7] Ebrahimnejad, A.:
A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers. Appl. Soft Comput. 19 (2014), 171-176.
DOI |
MR 3414360
[8] Furukawa, N.:
Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems. Optimization 40 (1997), 171-192.
DOI |
MR 1620380
[9] Hernández-Lerma, O., Lasserre, J. B.:
Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York, 1996.
MR 1363487 |
Zbl 0840.93001
[10] Kageyama, M.:
Credibilistic Markov decision processes: the average case. J. Comput. Appl. Math. 224 (2009), 1, 140-145.
DOI |
MR 2474219
[11] Kaur, A., Kumar, A.:
A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Appl. Soft Comput. 12 (2012), 3, 1201-1213.
DOI |
MR 3040892
[13] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.:
A fuzzy treatment of uncertain Markov decision processes: average case. In: Proc. ASSM2000 International Conference on Applied Stochastic System Modeling, Kyoto 2000, pp. 148-157.
MR 1782634
[14] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.:
Markov-type fuzzy decision processes with a discounted reward on a closed interval. Eur. J. Oper. Res. 92 (1996), 3, 649-662.
DOI |
MR 1328908
[15] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.:
Markov decision processes with fuzzy rewards. J. Nonlinear Convex Anal. 4 (1996), 1, 105-116.
MR 1986973
[16] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Perceptive evaluation for the optimal discounted reward in Markov decision processes. In: International Conference on Modeling Decisions for Artificial Intelligence, Springer 2005, pp. 283-293.
[17] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.:
A fuzzy approach to Markov decision processes with uncertain transition probabilities. Fuzzy Sets and Systems 157 (2006), 19, 2674-2682.
DOI |
MR 2328391
[18] López-Díaz, M., Ralescu, D. A.:
Tools for fuzzy random variables: embeddings and measurabilities. Comput. Statist. Data Anal. 51 (2006), 109-114.
DOI |
MR 2297590
[19] Puri, M. L., Ralescu, D. A.:
Fuzzy random variable. J. Math. Anal. Appl. 114 (1986), 402-422.
DOI |
MR 0833596
[20] Puterman, M.:
Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, 1994.
MR 1270015 |
Zbl 1184.90170
[21] Rani, D., Gulati, T. R.:
A new approach to solve unbalanced transportation problems in imprecise environment. J. Transp. Secur. 7 (2014), 3, 277-287.
DOI
[22] Rani, D., Gulati, T. R., Kumar, A.:
A method for unbalanced transportation problems in fuzzy environment. Sadhana 39 (2014),3, 573-581.
DOI |
MR 3225832
[23] Rezvani, S., Molani, M.:
Representation of trapezoidal fuzzy numbers with shape function. Ann. Fuzzy Math. Inform. 8 (2014), 89-112.
MR 3214770
[24] Ross, S.:
Applied Probability Models with Optimization Applications. Holden Day, 1996.
MR 0264792
[25] Semmouri, A., Jourhmane, M., Belhallaj, Z.:
Discounted Markov decision processes with fuzzy costs. Ann. Oper. Res. 295 (2020), 769-786.
DOI |
MR 4181708
[26] Sennott, L.:
Stochastic Dynamic Programming and Control of Queueing Systems. Systems. Wiley, New York 1999.
MR 1645435
[27] Syropoulos, A., Grammenos, T.: A Modern Introduction to Fuzzy Mathematics. Wiley, New Jersey 2020.
[28] Wang, J., Ma, X., Xu, Z., Zhan, J.:
Three-way multi-attribute decision making under hesitant fuzzy environments. Inform. Sci. 552 (2021), 328-351.
DOI |
MR 4197247