Previous |  Up |  Next

Article

Keywords:
infinite-volume Gibbs measure; existence; Gibbs facet process; Gibbs–Laguerre tessellation
Summary:
This paper generalizes a recent existence result for infinite-volume marked Gibbs point processes. We try to use the existence theorem for two models from stochastic geometry. First, we show the existence of Gibbs facet processes in $\mathbb{R}^d$ with repulsive interactions. We also prove that the finite-volume Gibbs facet processes with attractive interactions need not exist. Afterwards, we study Gibbs-Laguerre tessellations of $\mathbb{R}^2$. The mentioned existence result cannot be used, since one of its assumptions is not satisfied for tessellations, but we are able to show the existence of an infinite-volume Gibbs-Laguerre process with a particular energy function, under the assumption that we almost surely see a point.
References:
[1] Dereudre, D.: The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains. Adv. Appl.Probab. 41 (2009), 3, 664-681. DOI  | MR 2571312
[2] Dereudre, D.: Introduction to the theory of Gibbs point processes. In: Stochastic Geometry: Modern Research Frontiers, (D. Coupier, ed.), Springer International Publishing, Cham 2019, pp 181-229. DOI  | MR 3931586
[3] Dereudre, D., Drouilhet, R., Georgii, H. O.: Existence of Gibbsian point processes with geometry-dependent interactions. Probab. Theory Related Fields 153 (2012), 3, 643-670. DOI  | MR 2948688
[4] Georgii, H. O., Zessin, H.: Large deviations and the maximum entropy principle for marked point random fields. Probab. Theory Related Fields 96 (1993), 2, 177-204. DOI  | MR 1227031
[5] Jahn, D., Seitl, F.: Existence and simulation of Gibbs-Delaunay-Laguerre tessellations. Kybernetika 56 (2020), 4, 617-645. DOI  | MR 4168528
[6] Lautensack, C.: Random Laguerre Tessellations. PhD Thesis, University of Karlsruhe, 2007.
[7] Moller, J.: Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics, Springer-Verlag, New York 1994. MR 1295245
[8] Moller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton 2004. MR 2004226
[9] Roelly, S., Zass, A.: Marked Gibbs point processes with unbounded interaction: an existence result. J. Statist. Physics 179 (2020), 4, 972-996. DOI  | MR 4102445
[10] Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., New York - Amsterdam 1969. MR 0289084
[11] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 1993. MR 1216521
[12] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and its Applications (New York). Springer-Verlag, Berlin 2008. MR 2455326 | Zbl 1175.60003
[13] Večeřa, J., Beneš, V.: Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity. Methodology Computing Appl. Probab. 18 (2016), 4, 1217-1239. DOI  | MR 3564860
[14] Zessin, H.: Point processes in general position. J. Contempor. Math. Anal. 43 (2008), 1, 59-65. DOI  | MR 2465001
Partner of
EuDML logo