[1] Dereudre, D.:
The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains. Adv. Appl.Probab. 41 (2009), 3, 664-681.
DOI |
MR 2571312
[2] Dereudre, D.:
Introduction to the theory of Gibbs point processes. In: Stochastic Geometry: Modern Research Frontiers, (D. Coupier, ed.), Springer International Publishing, Cham 2019, pp 181-229.
DOI |
MR 3931586
[3] Dereudre, D., Drouilhet, R., Georgii, H. O.:
Existence of Gibbsian point processes with geometry-dependent interactions. Probab. Theory Related Fields 153 (2012), 3, 643-670.
DOI |
MR 2948688
[4] Georgii, H. O., Zessin, H.:
Large deviations and the maximum entropy principle for marked point random fields. Probab. Theory Related Fields 96 (1993), 2, 177-204.
DOI |
MR 1227031
[5] Jahn, D., Seitl, F.:
Existence and simulation of Gibbs-Delaunay-Laguerre tessellations. Kybernetika 56 (2020), 4, 617-645.
DOI |
MR 4168528
[6] Lautensack, C.: Random Laguerre Tessellations. PhD Thesis, University of Karlsruhe, 2007.
[7] Moller, J.:
Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics, Springer-Verlag, New York 1994.
MR 1295245
[8] Moller, J., Waagepetersen, R. P.:
Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton 2004.
MR 2004226
[9] Roelly, S., Zass, A.:
Marked Gibbs point processes with unbounded interaction: an existence result. J. Statist. Physics 179 (2020), 4, 972-996.
DOI |
MR 4102445
[10] Ruelle, D.:
Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., New York - Amsterdam 1969.
MR 0289084
[11] Schneider, R.:
Convex Bodies: the Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 1993.
MR 1216521
[12] Schneider, R., Weil, W.:
Stochastic and Integral Geometry. Probability and its Applications (New York). Springer-Verlag, Berlin 2008.
MR 2455326 |
Zbl 1175.60003
[13] Večeřa, J., Beneš, V.:
Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity. Methodology Computing Appl. Probab. 18 (2016), 4, 1217-1239.
DOI |
MR 3564860
[14] Zessin, H.:
Point processes in general position. J. Contempor. Math. Anal. 43 (2008), 1, 59-65.
DOI |
MR 2465001